論文の概要: Variational Dynamic Mixtures
- arxiv url: http://arxiv.org/abs/2010.10403v2
- Date: Fri, 4 Dec 2020 11:18:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 07:20:56.279583
- Title: Variational Dynamic Mixtures
- Title(参考訳): 変分動的混合
- Authors: Chen Qiu, Stephan Mandt, Maja Rudolph
- Abstract要約: 逐次潜伏変数を推定するための変分動的混合(VDM)を開発した。
実証実験により、VDMは、高マルチモーダルデータセットにおける競合するアプローチよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 18.730501689781214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep probabilistic time series forecasting models have become an integral
part of machine learning. While several powerful generative models have been
proposed, we provide evidence that their associated inference models are
oftentimes too limited and cause the generative model to predict mode-averaged
dynamics. Modeaveraging is problematic since many real-world sequences are
highly multi-modal, and their averaged dynamics are unphysical (e.g., predicted
taxi trajectories might run through buildings on the street map). To better
capture multi-modality, we develop variational dynamic mixtures (VDM): a new
variational family to infer sequential latent variables. The VDM approximate
posterior at each time step is a mixture density network, whose parameters come
from propagating multiple samples through a recurrent architecture. This
results in an expressive multi-modal posterior approximation. In an empirical
study, we show that VDM outperforms competing approaches on highly multi-modal
datasets from different domains.
- Abstract(参考訳): 深い確率的時系列予測モデルが機械学習の不可欠な部分となっている。
いくつかの強力な生成モデルが提案されているが、それらの関連する推論モデルはしばしば制限されすぎており、生成モデルがモード平均ダイナミクスを予測している証拠を提供する。
多くの実世界のシーケンスは高度にマルチモーダルであり、それらの平均的なダイナミクスは非物理的である(例えば、予測されたタクシー軌道は道路地図上の建物を通り抜けるかもしれない)。
マルチモダリティをよりよく捉えるために、変分動的混合(vdm: variational dynamic mixtures)を開発した。
それぞれの時間ステップにおけるVDM近似は混合密度ネットワークであり、そのパラメータは再帰的なアーキテクチャを通して複数のサンプルを伝播することに由来する。
この結果, マルチモーダル後部近似が得られた。
実証実験により、VDMは、異なるドメインの高度マルチモーダルデータセットにおいて競合するアプローチよりも優れていることを示す。
関連論文リスト
- MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
実世界のアプリケーションでは,音声およびビデオデータに基づくマルチモーダル感情認識が重要である。
近年の手法は、強力なマルチモーダルエンコーダの事前学習に自己教師付き学習(SSL)の進歩を活用することに重点を置いている。
SSL-pre-trained disimodal encoders を用いて,この問題に対する異なる視点とマルチモーダル DFER の性能向上について検討する。
論文 参考訳(メタデータ) (2024-04-13T13:39:26Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
本稿では,ニューラルPDEソルバの原理に着想を得た新しいLMTFモデルであるPDETimeを提案する。
7つの異なる時間的実世界のLMTFデータセットを用いた実験により、PDETimeがデータ固有の性質に効果的に適応できることが判明した。
論文 参考訳(メタデータ) (2024-02-25T17:39:44Z) - Learning multi-modal generative models with permutation-invariant encoders and tighter variational bounds [5.549794481031468]
マルチモーダルデータに対する深い潜伏変数モデルの開発は、機械学習研究において長年のテーマであった。
本研究では,データログの類似性を厳密に近似できる変動境界について考察する。
我々は、置換不変ニューラルネットワークに基づく様々なモードから符号化された特徴を組み合わせることで、PoEやMoEアプローチを一般化するより柔軟なアグリゲーションスキームを開発する。
論文 参考訳(メタデータ) (2023-09-01T10:32:21Z) - Learning Differential Operators for Interpretable Time Series Modeling [34.32259687441212]
逐次データから解釈可能なPDEモデルを自動的に取得できる学習フレームワークを提案する。
我々のモデルは、貴重な解釈可能性を提供し、最先端モデルに匹敵する性能を達成することができる。
論文 参考訳(メタデータ) (2022-09-03T20:14:31Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Dynamic Gaussian Mixture based Deep Generative Model For Robust
Forecasting on Sparse Multivariate Time Series [43.86737761236125]
本研究では,孤立した特徴表現ではなく,潜在クラスタの遷移を追跡する新しい生成モデルを提案する。
新たに設計された動的ガウス混合分布が特徴であり、クラスタリング構造のダイナミクスを捉えている。
帰納的解析を可能にするために構造化推論ネットワークも設計されている。
論文 参考訳(メタデータ) (2021-03-03T04:10:07Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [55.28436972267793]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Learning more expressive joint distributions in multimodal variational
methods [0.17188280334580194]
正規化フローを用いたマルチモーダル変分法の表現能力を向上させる手法を提案する。
このモデルは,様々なコンピュータビジョンタスクの変動推論に基づいて,最先端のマルチモーダル手法を改善することを実証する。
また, より強力な近似関節分布の学習により, 生成した試料の品質が向上することを示した。
論文 参考訳(メタデータ) (2020-09-08T11:45:27Z) - Variational Hyper RNN for Sequence Modeling [69.0659591456772]
本稿では,時系列データにおける高変数の取得に優れる新しい確率的シーケンスモデルを提案する。
提案手法では,時間潜時変数を用いて基礎となるデータパターンに関する情報をキャプチャする。
提案手法の有効性を,合成および実世界のシーケンシャルデータに示す。
論文 参考訳(メタデータ) (2020-02-24T19:30:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。