論文の概要: Modeling Content and Context with Deep Relational Learning
- arxiv url: http://arxiv.org/abs/2010.10453v1
- Date: Tue, 20 Oct 2020 17:09:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 06:02:32.024663
- Title: Modeling Content and Context with Deep Relational Learning
- Title(参考訳): 深い関係学習による内容と文脈のモデリング
- Authors: Maria Leonor Pacheco and Dan Goldwasser
- Abstract要約: DRaiLは、ディープリレーショナルモデルを特定するためのオープンソースの宣言型フレームワークである。
我々のフレームワークは、表現型言語エンコーダとの容易な統合をサポートし、表現、推論、学習間の相互作用を研究するためのインターフェースを提供する。
- 参考スコア(独自算出の注目度): 31.854529627213275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building models for realistic natural language tasks requires dealing with
long texts and accounting for complicated structural dependencies.
Neural-symbolic representations have emerged as a way to combine the reasoning
capabilities of symbolic methods, with the expressiveness of neural networks.
However, most of the existing frameworks for combining neural and symbolic
representations have been designed for classic relational learning tasks that
work over a universe of symbolic entities and relations. In this paper, we
present DRaiL, an open-source declarative framework for specifying deep
relational models, designed to support a variety of NLP scenarios. Our
framework supports easy integration with expressive language encoders, and
provides an interface to study the interactions between representation,
inference and learning.
- Abstract(参考訳): 現実的な自然言語タスクのためのモデルの構築には、長いテキストの処理と複雑な構造的依存関係の会計が必要です。
ニューラルシンボリック表現は、シンボリックメソッドの推論能力とニューラルネットワークの表現性を結合する手段として登場した。
しかしながら、既存のニューラル表現とシンボリック表現を組み合わせるフレームワークのほとんどは、シンボリックエンティティとリレーションの宇宙で動作する古典的なリレーショナル学習タスクのために設計されている。
本稿では,多種多様なNLPシナリオをサポートするために設計された,ディープリレーショナルモデルを特定するためのオープンソースの宣言フレームワークDRaiLを提案する。
我々のフレームワークは、表現型言語エンコーダとの容易な統合をサポートし、表現、推論、学習間の相互作用を研究するためのインターフェースを提供する。
関連論文リスト
- VisualPredicator: Learning Abstract World Models with Neuro-Symbolic Predicates for Robot Planning [86.59849798539312]
本稿では,記号的・神経的知識表現の強みを組み合わせた一階抽象言語Neuro-Symbolic Predicatesを提案する。
提案手法は, サンプルの複雑さの向上, 分布外一般化の強化, 解釈可能性の向上を実現する。
論文 参考訳(メタデータ) (2024-10-30T16:11:05Z) - Prompt2DeModel: Declarative Neuro-Symbolic Modeling with Natural Language [18.00674366843745]
本稿では,自然言語による複雑なニューロシンボリックモデルのためのドメイン知識構築のためのパイプラインを提案する。
提案するパイプラインは,動的なコンテキスト内実演検索,シンボル可視化からのフィードバックに基づくモデル改良,ユーザインタラクションなどの手法を利用する。
このアプローチによって、ML/AIに精通していないドメイン専門家でさえ、自身の知識をカスタマイズされたニューラルモデルに組み込むように正式に宣言することが可能になる。
論文 参考訳(メタデータ) (2024-07-30T03:10:30Z) - Contextualized word senses: from attention to compositionality [0.10878040851637999]
本稿では,文脈感覚を符号化する透過的,解釈可能,言語的に動機づけられた戦略を提案する。
特に依存関係や選択選好やパラダイムクラスといった意味概念に注意が向けられる。
論文 参考訳(メタデータ) (2023-12-01T16:04:00Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
我々は,思考の確率的言語(PLoT)に似た認知過程をモデル化するために,アトラクタダイナミクスを記号表現と統合した新しいニューラルシステムモデルを導入する。
我々のモデルは、連続表現空間を、事前定義されたプリミティブに頼るのではなく、教師なし学習を通じて、記号系の意味性と構成性の特徴を反映する、記号列に対応する引き付け状態を持つ離散盆地に分割する。
このアプローチは、認知操作の複雑な双対性を反映したより包括的なモデルを提供する、AIにおける表現力の証明された神経弁別可能な基質であるニューラルダイナミクスを通じて、シンボル処理とサブシンボル処理の両方を統合する統一的なフレームワークを確立する。
論文 参考訳(メタデータ) (2023-10-03T05:40:56Z) - Learning Symbolic Rules over Abstract Meaning Representations for
Textual Reinforcement Learning [63.148199057487226]
本稿では,汎用的な意味一般化とルール誘導システムを組み合わせて,解釈可能なルールをポリシーとして学習するモジュール型 NEuroSymbolic Textual Agent (NESTA) を提案する。
実験の結果,NESTA法は,未確認テストゲームや少ないトレーニングインタラクションから学習することで,深層強化学習技術よりも優れることがわかった。
論文 参考訳(メタデータ) (2023-07-05T23:21:05Z) - SNeL: A Structured Neuro-Symbolic Language for Entity-Based Multimodal
Scene Understanding [0.0]
SNeL(Structured Neuro-symbolic Language, 構造化ニューラルシンボリック言語)は,マルチモーダルデータを処理するニューラルネットワークとのニュアンスな相互作用を容易にする汎用的なクエリ言語である。
SNeLの表現的インターフェースは、複雑なクエリの構築、論理演算と算術演算子、コンパレータ、ネストなどをサポートする。
我々の評価は、SNeLが複雑なニューラルネットワークとの相互作用を形作る可能性を示している。
論文 参考訳(メタデータ) (2023-06-09T17:01:51Z) - Topics as Entity Clusters: Entity-based Topics from Large Language Models and Graph Neural Networks [0.6486052012623045]
本稿では,エンティティのバイモーダルベクトル表現を用いたトピッククラスタリング手法を提案する。
我々のアプローチは、最先端のモデルと比較してエンティティを扱うのに適している。
論文 参考訳(メタデータ) (2023-01-06T10:54:54Z) - elBERto: Self-supervised Commonsense Learning for Question Answering [131.51059870970616]
本稿では、市販QAモデルアーキテクチャと互換性のあるコモンセンスフレームワークの自己教師型双方向表現学習を提案する。
このフレームワークは5つの自己教師型タスクから構成されており、リッチコモンセンスを含むコンテキストから追加のトレーニング信号を完全に活用するようモデルに強制する。
elBERtoは、単純な語彙的類似性比較が役に立たないような、アウト・オブ・パラグラフや非エフェクトな問題に対して、大幅に改善されている。
論文 参考訳(メタデータ) (2022-03-17T16:23:45Z) - Imposing Relation Structure in Language-Model Embeddings Using
Contrastive Learning [30.00047118880045]
グラフ構造における関係をエンコードするために文埋め込みを訓練する新しいコントラスト学習フレームワークを提案する。
結果として得られた関係認識文の埋め込みは、関係抽出タスクにおける最先端の結果を得る。
論文 参考訳(メタデータ) (2021-09-02T10:58:27Z) - pix2rule: End-to-end Neuro-symbolic Rule Learning [84.76439511271711]
本稿では,画像のオブジェクトへの処理,学習関係,論理規則に関する完全なニューロシンボリックな手法を提案する。
主な貢献は、シンボリックリレーションとルールを抽出できるディープラーニングアーキテクチャにおける差別化可能なレイヤである。
我々のモデルは最先端のシンボリックラーナーを超えてスケールし、ディープリレーショナルニューラルネットワークアーキテクチャよりも優れていることを実証する。
論文 参考訳(メタデータ) (2021-06-14T15:19:06Z) - Neuro-Symbolic Representations for Video Captioning: A Case for
Leveraging Inductive Biases for Vision and Language [148.0843278195794]
ビデオキャプションのためのマルチモーダルなニューラルシンボリック表現を学習するための新しいモデルアーキテクチャを提案する。
本手法では,ビデオ間の関係を学習する辞書学習手法と,そのペアによるテキスト記述を用いる。
論文 参考訳(メタデータ) (2020-11-18T20:21:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。