論文の概要: Modeling Content and Context with Deep Relational Learning
- arxiv url: http://arxiv.org/abs/2010.10453v1
- Date: Tue, 20 Oct 2020 17:09:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 06:02:32.024663
- Title: Modeling Content and Context with Deep Relational Learning
- Title(参考訳): 深い関係学習による内容と文脈のモデリング
- Authors: Maria Leonor Pacheco and Dan Goldwasser
- Abstract要約: DRaiLは、ディープリレーショナルモデルを特定するためのオープンソースの宣言型フレームワークである。
我々のフレームワークは、表現型言語エンコーダとの容易な統合をサポートし、表現、推論、学習間の相互作用を研究するためのインターフェースを提供する。
- 参考スコア(独自算出の注目度): 31.854529627213275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building models for realistic natural language tasks requires dealing with
long texts and accounting for complicated structural dependencies.
Neural-symbolic representations have emerged as a way to combine the reasoning
capabilities of symbolic methods, with the expressiveness of neural networks.
However, most of the existing frameworks for combining neural and symbolic
representations have been designed for classic relational learning tasks that
work over a universe of symbolic entities and relations. In this paper, we
present DRaiL, an open-source declarative framework for specifying deep
relational models, designed to support a variety of NLP scenarios. Our
framework supports easy integration with expressive language encoders, and
provides an interface to study the interactions between representation,
inference and learning.
- Abstract(参考訳): 現実的な自然言語タスクのためのモデルの構築には、長いテキストの処理と複雑な構造的依存関係の会計が必要です。
ニューラルシンボリック表現は、シンボリックメソッドの推論能力とニューラルネットワークの表現性を結合する手段として登場した。
しかしながら、既存のニューラル表現とシンボリック表現を組み合わせるフレームワークのほとんどは、シンボリックエンティティとリレーションの宇宙で動作する古典的なリレーショナル学習タスクのために設計されている。
本稿では,多種多様なNLPシナリオをサポートするために設計された,ディープリレーショナルモデルを特定するためのオープンソースの宣言フレームワークDRaiLを提案する。
我々のフレームワークは、表現型言語エンコーダとの容易な統合をサポートし、表現、推論、学習間の相互作用を研究するためのインターフェースを提供する。
関連論文リスト
- Hierarchical Banzhaf Interaction for General Video-Language Representation Learning [60.44337740854767]
マルチモーダル表現学習は人工知能領域において重要な役割を担っている。
本稿では,多変量協調ゲーム理論を用いて,ビデオテキストをゲームプレイヤーとしてモデル化する手法を提案する。
元の構造をフレキシブルなエンコーダ・デコーダ・フレームワークに拡張し、モデルが様々な下流タスクに適応できるようにする。
論文 参考訳(メタデータ) (2024-12-30T14:09:15Z) - Neurosymbolic Graph Enrichment for Grounded World Models [47.92947508449361]
複雑な問題に対処するために, LLM の反応性を向上し, 活用するための新しいアプローチを提案する。
我々は,大規模言語モデルの強みと構造的意味表現を組み合わせた,多モーダルで知識を付加した意味の形式表現を作成する。
非構造化言語モデルと形式的意味構造とのギャップを埋めることで、自然言語理解と推論における複雑な問題に対処するための新たな道を開く。
論文 参考訳(メタデータ) (2024-11-19T17:23:55Z) - VisualPredicator: Learning Abstract World Models with Neuro-Symbolic Predicates for Robot Planning [86.59849798539312]
本稿では,記号的・神経的知識表現の強みを組み合わせた一階抽象言語Neuro-Symbolic Predicatesを提案する。
提案手法は, サンプルの複雑さの向上, 分布外一般化の強化, 解釈可能性の向上を実現する。
論文 参考訳(メタデータ) (2024-10-30T16:11:05Z) - Prompt2DeModel: Declarative Neuro-Symbolic Modeling with Natural Language [18.00674366843745]
本稿では,自然言語による複雑なニューロシンボリックモデルのためのドメイン知識構築のためのパイプラインを提案する。
提案するパイプラインは,動的なコンテキスト内実演検索,シンボル可視化からのフィードバックに基づくモデル改良,ユーザインタラクションなどの手法を利用する。
このアプローチによって、ML/AIに精通していないドメイン専門家でさえ、自身の知識をカスタマイズされたニューラルモデルに組み込むように正式に宣言することが可能になる。
論文 参考訳(メタデータ) (2024-07-30T03:10:30Z) - Contextualized word senses: from attention to compositionality [0.10878040851637999]
本稿では,文脈感覚を符号化する透過的,解釈可能,言語的に動機づけられた戦略を提案する。
特に依存関係や選択選好やパラダイムクラスといった意味概念に注意が向けられる。
論文 参考訳(メタデータ) (2023-12-01T16:04:00Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
我々は,思考の確率的言語(PLoT)に似た認知過程をモデル化するために,アトラクタダイナミクスを記号表現と統合した新しいニューラルシステムモデルを導入する。
我々のモデルは、連続表現空間を、事前定義されたプリミティブに頼るのではなく、教師なし学習を通じて、記号系の意味性と構成性の特徴を反映する、記号列に対応する引き付け状態を持つ離散盆地に分割する。
このアプローチは、認知操作の複雑な双対性を反映したより包括的なモデルを提供する、AIにおける表現力の証明された神経弁別可能な基質であるニューラルダイナミクスを通じて、シンボル処理とサブシンボル処理の両方を統合する統一的なフレームワークを確立する。
論文 参考訳(メタデータ) (2023-10-03T05:40:56Z) - Topics as Entity Clusters: Entity-based Topics from Large Language Models and Graph Neural Networks [0.6486052012623045]
本稿では,エンティティのバイモーダルベクトル表現を用いたトピッククラスタリング手法を提案する。
我々のアプローチは、最先端のモデルと比較してエンティティを扱うのに適している。
論文 参考訳(メタデータ) (2023-01-06T10:54:54Z) - elBERto: Self-supervised Commonsense Learning for Question Answering [131.51059870970616]
本稿では、市販QAモデルアーキテクチャと互換性のあるコモンセンスフレームワークの自己教師型双方向表現学習を提案する。
このフレームワークは5つの自己教師型タスクから構成されており、リッチコモンセンスを含むコンテキストから追加のトレーニング信号を完全に活用するようモデルに強制する。
elBERtoは、単純な語彙的類似性比較が役に立たないような、アウト・オブ・パラグラフや非エフェクトな問題に対して、大幅に改善されている。
論文 参考訳(メタデータ) (2022-03-17T16:23:45Z) - Imposing Relation Structure in Language-Model Embeddings Using
Contrastive Learning [30.00047118880045]
グラフ構造における関係をエンコードするために文埋め込みを訓練する新しいコントラスト学習フレームワークを提案する。
結果として得られた関係認識文の埋め込みは、関係抽出タスクにおける最先端の結果を得る。
論文 参考訳(メタデータ) (2021-09-02T10:58:27Z) - pix2rule: End-to-end Neuro-symbolic Rule Learning [84.76439511271711]
本稿では,画像のオブジェクトへの処理,学習関係,論理規則に関する完全なニューロシンボリックな手法を提案する。
主な貢献は、シンボリックリレーションとルールを抽出できるディープラーニングアーキテクチャにおける差別化可能なレイヤである。
我々のモデルは最先端のシンボリックラーナーを超えてスケールし、ディープリレーショナルニューラルネットワークアーキテクチャよりも優れていることを実証する。
論文 参考訳(メタデータ) (2021-06-14T15:19:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。