The periodically driven electron in a quantum well with two
characteristic curvatures -- redux
- URL: http://arxiv.org/abs/2010.10518v2
- Date: Sun, 25 Oct 2020 00:49:45 GMT
- Title: The periodically driven electron in a quantum well with two
characteristic curvatures -- redux
- Authors: Rafael Bautista-Mena
- Abstract summary: I develop the solution to the problem of an electron confined in a composite quadratic well subject to a simple, external periodic force.
The method of solution illustrates several of the basic techniques useful in formally solving the one-dimensional, time-dependent Schrodinger equation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: I develop the solution to the problem of an electron confined in a composite
quadratic well subject to a simple, external periodic force. The method of
solution illustrates several of the basic techniques useful in formally solving
the one-dimensional, time-dependent Schrodinger equation. One of the aims of
this exercise is to see how far is it possible to push analytics, before
plowing into numerical methods. I hope this presentation of the problem may
result useful to others seeking to gain additional experience in the details of
solving the time-dependent Schrodinger equation in one space dimension.
Related papers
- Time-Dependent Dunkl-Schrödinger Equation with an Angular-Dependent Potential [0.0]
The Schr"odinger equation is a fundamental equation in quantum mechanics.
Over the past decade, theoretical studies have focused on adapting the Dunkl derivative to quantum mechanical problems.
arXiv Detail & Related papers (2024-08-04T13:11:52Z) - Free expansion of a Gaussian wavepacket using operator manipulations [77.34726150561087]
The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate quantum classes.
We provide an alternative way to calculate the free expansion by recognizing that the Gaussian wavepacket can be thought of as the ground state of a harmonic oscillator.
As quantum instruction evolves to include more quantum information science applications, reworking this well known problem using a squeezing formalism will help students develop intuition for how squeezed states are used in quantum sensing.
arXiv Detail & Related papers (2023-04-28T19:20:52Z) - The Half Transform Ansatz: Quarkonium Dynamics in Quantum Phase Space [0.0]
We present a method to cast the Schrodinger Equation into a hyper-geometric form which can be solved for the phase space wave function and its energy eigenvalues.
We also analyze the behavior of these wave functions, which suggest a correlation between radial momentum and the upper limit of existence in charm-anticharm mesons.
arXiv Detail & Related papers (2023-03-28T23:38:57Z) - Exact quantum dynamics for two-level systems with time-dependent driving [2.69899958854431]
Time-dependent Schr"odinger equation can only be exactly solvable in very rare cases.
We present a method which could generate a near infinite number of analytical-assisted solutions of the Schr"odinger equation for a qubit.
arXiv Detail & Related papers (2022-11-07T07:29:13Z) - The Laplace method for energy eigenvalue problems in quantum mechanics [0.0]
We present an alternative way to solve problems based on the Laplace method.
It was originally used by Schroedinger when he solved for the wavefunctions of hydrogen.
arXiv Detail & Related papers (2022-08-15T21:01:52Z) - A shortcut to adiabaticity in a cavity with a moving mirror [58.720142291102135]
We describe for the first time how to implement shortcuts to adiabaticity in quantum field theory.
The shortcuts take place whenever there is no dynamical Casimir effect.
We obtain a fundamental limit for the efficiency of an Otto cycle with the quantum field as a working system.
arXiv Detail & Related papers (2022-02-01T20:40:57Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - New approach to describe two coupled spins in a variable magnetic field [55.41644538483948]
We describe the evolution of two spins coupled by hyperfine interaction in an external time-dependent magnetic field.
We modify the time-dependent Schr"odinger equation through a change of representation.
The solution is highly simplified when an adiabatically varying magnetic field perturbs the system.
arXiv Detail & Related papers (2020-11-23T17:29:31Z) - Schrodinger's original quantum-mechanical solution for hydrogen [0.0]
In his first paper, Erwin Schrodinger solved the Schrodinger equation using the Laplace method.
We show how the Laplace method can be used to solve for the quantum-mechanical energy eigenfunctions of the hydrogen atom.
arXiv Detail & Related papers (2020-07-24T21:23:26Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.