Idler-free channel position finding
- URL: http://arxiv.org/abs/2010.10547v3
- Date: Thu, 29 Apr 2021 18:02:31 GMT
- Title: Idler-free channel position finding
- Authors: Jason L. Pereira, Leonardo Banchi, Quntao Zhuang, Stefano Pirandola
- Abstract summary: Entanglement is a powerful tool for quantum sensing, and entangled states can greatly boost the discriminative power of protocols.
Storing a quantum state is difficult and so technological limitations can make protocols requiring quantum memories impracticable.
One alternative is idler-free protocols that utilise non-classical sources but do not require any idler states to be stored.
- Score: 0.7874708385247353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entanglement is a powerful tool for quantum sensing, and entangled states can
greatly boost the discriminative power of protocols for quantum illumination,
quantum metrology, or quantum reading. However, entangled state protocols
generally require the retention of an idler state, to which the probes are
entangled. Storing a quantum state is difficult and so technological
limitations can make protocols requiring quantum memories impracticable. One
alternative is idler-free protocols that utilise non-classical sources but do
not require any idler states to be stored. Here we apply such a protocol to the
task of channel position finding. This involves finding a target channel in a
sequence of background channels, and has many applications, including quantum
sensing, quantum spectroscopy, and quantum reading.
Related papers
- Quantum Homogenization as a Quantum Steady State Protocol on NISQ Hardware [42.52549987351643]
Quantum homogenization is a reservoir-based quantum state approximation protocol.
We extend the standard quantum homogenization protocol to the dynamically-equivalent ($mathttSWAP$)$alpha$ formulation.
We show that our proposed protocol yields a completely positive, trace preserving (CPTP) map under which the code subspace is correctable.
arXiv Detail & Related papers (2024-12-19T05:50:54Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Retrieving non-linear features from noisy quantum states [11.289924445850328]
In this paper, we analyze the feasibility and efficiency of extracting high-order moments from noisy states.
We first show that there exists a quantum protocol capable of accomplishing this task if and only if the underlying noise channel is invertible.
Our work contributes to a deeper understanding of how quantum noise could affect high-order information extraction and provides guidance on how to tackle it.
arXiv Detail & Related papers (2023-09-20T15:28:18Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - On Zero-Knowledge Proofs over the Quantum Internet [0.0]
This paper presents a new method for quantum identity authentication (QIA) protocols.
The logic of classical zero-knowledge proofs (ZKPs) due to Schnorr is applied in quantum circuits and algorithms.
arXiv Detail & Related papers (2022-12-06T14:57:00Z) - Nontraditional Deterministic Remote State Preparation Using a
Non-Maximally Entangled Channel without Additional Quantum Resources [10.351739012146378]
We have developed a nontraditional remote state preparation protocol that allows for deterministically transferring information encoded in quantum states.
With an auxiliary particle and a simple measurement method, the success probability of preparing a d-dimensional quantum state is increased to 1 without spending additional quantum resources in advance to improve quantum channels.
arXiv Detail & Related papers (2022-03-16T08:59:49Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Benchmarking of Quantum Protocols [0.9176056742068812]
We consider several quantum protocols that enable promising functionalities and services in near-future quantum networks.
We use NetSquid simulation platform to evaluate the effect of various sources of noise on the performance of these protocols.
arXiv Detail & Related papers (2021-11-03T21:17:04Z) - The Role of Localizable Concurrence in Quantum Teleportation Protocols [0.0]
For mixed multi-partite states the lack of computable entanglement measures has made the identification of the quantum resource responsible for this advantage more challenging.
We show that any teleportation protocol using an arbitrary multi-partite state, that includes a Bell measurement, requires a non-vanishing localizable concurrence between two of its parties in order to perform better than the classical protocol.
arXiv Detail & Related papers (2021-06-12T01:00:52Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.