Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays
- URL: http://arxiv.org/abs/2407.05885v1
- Date: Mon, 8 Jul 2024 12:46:08 GMT
- Title: Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays
- Authors: Andriy H. Nevidomskyy, Hannes Bernien, Alexander Canright,
- Abstract summary: Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
- Score: 45.19832622389592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Storing quantum information, unlike information in a classical computer, requires battling quantum decoherence, which results in a loss of information over time. To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another, thus preventing quantum decoherence. One promising concept is that of fracton order -- a phase of matter with a large ground state degeneracy that grows subextensively with the system size. Unfortunately, the models realizing fractons are not friendly to experimental implementations as they require unnatural interactions between a substantial number (of the order of ten) of qubits. We demonstrate how this limitation can be circumvented by leveraging the long-range quantum entanglement created using only pairwise interactions between the code and ancilla qubits, realizable in programmable tweezer arrays of Rydberg atoms. We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
Related papers
- Quantum error correction of motional dephasing using optical dressing [1.8894050583899684]
We demonstrate the effectiveness of a novel protocol on a collective quantum superposition state known as a Rydberg polariton.
We show how our protocol via optical dressing using Raman lasers cancels dephasing and enhances coherence times by more than an order of magnitude.
arXiv Detail & Related papers (2024-09-07T09:15:41Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Quantum control of Rydberg atoms for mesoscopic-scale quantum state and
circuit preparation [0.0]
Individually trapped Rydberg atoms show significant promise as a platform for scalable quantum simulation.
We show that quantum control can be used to reliably generate fully connected cluster states and to simulate the error-correction encoding circuit.
arXiv Detail & Related papers (2023-02-15T19:00:01Z) - Certification of quantum states with hidden structure of their
bitstrings [0.0]
We propose a numerically cheap procedure to describe and distinguish quantum states.
We show that it is enough to characterize quantum states with different structure of entanglement.
Our approach can be employed to detect phase transitions of different nature in many-body quantum magnetic systems.
arXiv Detail & Related papers (2021-07-21T06:22:35Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Universal quantum computation and quantum error correction with
ultracold atomic mixtures [47.187609203210705]
We propose a mixture of two ultracold atomic species as a platform for universal quantum computation with long-range entangling gates.
One atomic species realizes localized collective spins of tunable length, which form the fundamental unit of information.
We discuss a finite-dimensional version of the Gottesman-Kitaev-Preskill code to protect quantum information encoded in the collective spins.
arXiv Detail & Related papers (2020-10-29T20:17:14Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.