論文の概要: Convolutional 3D to 2D Patch Conversion for Pixel-wise Glioma
Segmentation in MRI Scans
- arxiv url: http://arxiv.org/abs/2010.10612v1
- Date: Tue, 20 Oct 2020 20:42:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 07:39:18.964972
- Title: Convolutional 3D to 2D Patch Conversion for Pixel-wise Glioma
Segmentation in MRI Scans
- Title(参考訳): MRIにおける眼グリオーマ偏位に対する畳み込み3D-2Dパッチ変換
- Authors: Mohammad Hamghalam, Baiying Lei, and Tianfu Wang
- Abstract要約: 畳み込み3Dから2次元MRパッチ変換モデルにより,新しい画素ワイドセグメンテーションフレームワークを考案する。
本アーキテクチャでは, 局所スライス特性とグローバルスライス特性を併用して, 中央ボクセルのクラスラベルを推定する。
- 参考スコア(独自算出の注目度): 22.60715394470069
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structural magnetic resonance imaging (MRI) has been widely utilized for
analysis and diagnosis of brain diseases. Automatic segmentation of brain
tumors is a challenging task for computer-aided diagnosis due to low-tissue
contrast in the tumor subregions. To overcome this, we devise a novel
pixel-wise segmentation framework through a convolutional 3D to 2D MR patch
conversion model to predict class labels of the central pixel in the input
sliding patches. Precisely, we first extract 3D patches from each modality to
calibrate slices through the squeeze and excitation (SE) block. Then, the
output of the SE block is fed directly into subsequent bottleneck layers to
reduce the number of channels. Finally, the calibrated 2D slices are
concatenated to obtain multimodal features through a 2D convolutional neural
network (CNN) for prediction of the central pixel. In our architecture, both
local inter-slice and global intra-slice features are jointly exploited to
predict class label of the central voxel in a given patch through the 2D CNN
classifier. We implicitly apply all modalities through trainable parameters to
assign weights to the contributions of each sequence for segmentation.
Experimental results on the segmentation of brain tumors in multimodal MRI
scans (BraTS'19) demonstrate that our proposed method can efficiently segment
the tumor regions.
- Abstract(参考訳): 構造磁気共鳴画像(MRI)は脳疾患の解析と診断に広く利用されている。
脳腫瘍の自動分節化は腫瘍亜領域の低音節コントラストによるコンピュータ支援診断の課題である。
そこで我々は,3Dから2DのMRパッチ変換モデルを用いて,入力されたスライディングパッチの中央画素のクラスラベルを予測する新しい画素分割フレームワークを考案した。
正確には、まず各モードから3Dパッチを抽出し、圧縮励起(SE)ブロックを通してスライスを校正する。
そして、SEブロックの出力を後続のボトルネック層に直接供給してチャネル数を減少させる。
最後に、中心画素の予測のための2D畳み込みニューラルネットワーク(CNN)を介して、校正された2Dスライスを連結してマルチモーダル特徴を得る。
本アーキテクチャでは, 局所スライスとグローバルスライスを併用して, 2次元CNN分類器を用いて中央ボクセルのクラスラベルを予測する。
トレーニング可能なパラメータを通してすべてのモダリティを暗黙的に適用し、各シーケンスの重み付けをセグメント化に割り当てる。
マルチモーダルMRI(BraTS'19)における脳腫瘍のセグメンテーションに関する実験結果から,本手法が腫瘍領域を効率的に分割できることが示唆された。
関連論文リスト
- Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
本稿では,畳み込みニューラルネットワーク(CNN)とトランスフォーマー層を組み合わせたハイブリッドネットワークを提案する。
プライベートおよびパブリックなDCE-MRIデータセットの実験結果から,提案したハイブリッドネットワークは最先端の手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-08-11T15:46:00Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
医用画像の領域分割を行うために, SAMを2次元から3次元に変換する新しい適応法を提案する。
本モデルでは, 腎腫瘍, 膵腫瘍, 大腸癌の3つのタスクのうち8.25%, 29.87%, 10.11%の3つのタスクにおいて, ドメイン・オブ・ザ・アーティヴ・メディカル・イメージ・セグメンテーション・モデルより優れ, 肝腫瘍セグメンテーションでも同様の性能が得られる。
論文 参考訳(メタデータ) (2023-06-23T12:09:52Z) - 3D Brainformer: 3D Fusion Transformer for Brain Tumor Segmentation [6.127298607534532]
深層学習は、最近脳腫瘍のセグメンテーションを改善するために現れた。
変換器は畳み込みネットワークの限界に対処するために利用されてきた。
本稿では,3次元トランスフォーマーを用いたセグメンテーション手法を提案する。
論文 参考訳(メタデータ) (2023-04-28T02:11:29Z) - View-Disentangled Transformer for Brain Lesion Detection [50.4918615815066]
より正確な腫瘍検出のためのMRI特徴抽出のための新しいビューディペンタングル変換器を提案する。
まず, 3次元脳スキャンにおいて, 異なる位置の長距離相関を求める。
第二に、トランスフォーマーはスライス機能のスタックを複数の2Dビューとしてモデル化し、これらの機能をビュー・バイ・ビューとして拡張する。
第三に、提案したトランスモジュールをトランスのバックボーンに展開し、脳病変を取り巻く2D領域を効果的に検出する。
論文 参考訳(メタデータ) (2022-09-20T11:58:23Z) - Med-DANet: Dynamic Architecture Network for Efficient Medical Volumetric
Segmentation [13.158995287578316]
我々は,Med-DANetという動的アーキテクチャネットワークを提案し,効率的な精度と効率のトレードオフを実現する。
入力された3次元MRIボリュームのスライス毎に,提案手法は決定ネットワークによってスライス固有の決定を学習する。
提案手法は, 従来の3次元MRI脳腫瘍セグメント化法と比較して, 同等あるいは良好な結果が得られる。
論文 参考訳(メタデータ) (2022-06-14T03:25:58Z) - CORPS: Cost-free Rigorous Pseudo-labeling based on Similarity-ranking
for Brain MRI Segmentation [3.1657395760137406]
本稿では,新しいアトラスを用いた擬似ラベル法と3次元脳MRI分割のための3次元深部畳み込みニューラルネットワーク(DCNN)に基づく半教師付きセグメンテーションフレームワークを提案する。
実験により, 定性的, 定量的に比較して, 提案手法の優位性を示した。
論文 参考訳(メタデータ) (2022-05-19T14:42:49Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors
in MRI Images [7.334185314342017]
我々はSwin UNEt TRansformers(Swin UNETR)と呼ばれる新しいセグメンテーションモデルを提案する。
このモデルは、シフトしたウィンドウを利用して、5つの異なる解像度で特徴を抽出し、自己注意を演算する。
我々は、BraTS 2021セグメンテーションチャレンジに参加し、提案したモデルは、検証フェーズにおける最も優れたアプローチの1つである。
論文 参考訳(メタデータ) (2022-01-04T18:01:34Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - Brain tumour segmentation using cascaded 3D densely-connected U-net [10.667165962654996]
本稿では,脳腫瘍をサブリージョンに分割する深層学習手法を提案する。
提案アーキテクチャは,U-Netアーキテクチャの変種に基づく3次元畳み込みニューラルネットワークである。
BraTS20バリデーションデータセットの実験結果から, 提案したモデルでは, 全腫瘍, 腫瘍コア, 造影腫瘍の平均Diceスコアが0.90, 0.82, 0.78に達した。
論文 参考訳(メタデータ) (2020-09-16T09:14:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。