Internal Photo Effect from a Single Quantum Emitter
- URL: http://arxiv.org/abs/2010.10924v1
- Date: Wed, 21 Oct 2020 12:13:07 GMT
- Title: Internal Photo Effect from a Single Quantum Emitter
- Authors: Pia Lochner, Jens Kerski, Annika Kurzmann, Andreas D. Wieck, Arne
Ludwig, Martin Geller, Axel Lorke
- Abstract summary: Internal photo-effect that emits electrons from the dot by an intra-band excitation is studied.
We find a linear dependence of the optically generated emission rate on the intensity excitation.
The results also quantify an important, but mostly neglected, mechanism that may fundamentally limit the coherence times in solid-state quantum optical devices.
- Score: 0.5172201569251683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate by time-resolved resonance fluorescence measurements on a
single self-assembled quantum dot an internal photo-effect that emits electrons
from the dot by an intra-band excitation. We find a linear dependence of the
optically generated emission rate on the excitation intensity and use a rate
equation model to deduce the involved rates. The emission rate is tunable over
several orders of magnitude by adjusting the excitation intensity. Our findings
show that a process that is well known in single atom spectroscopy (i.e. photo
ionization) can also be observed in the solid state. The results also quantify
an important, but mostly neglected, mechanism that may fundamentally limit the
coherence times in solid-state quantum optical devices.
Related papers
- Non-classical excitation of a solid-state quantum emitter [0.0]
We show that a single photon is sufficient to change the state of a solid-state quantum emitter.
These results suggest future possibilities ranging from enabling quantum information transfer in a quantum network to building deterministic entangling gates for photonic quantum computing.
arXiv Detail & Related papers (2024-07-30T16:16:58Z) - Band Gap Engineering and Controlling Transport Properties of Single
Photons in Periodic and Disordered Jaynes-Cummings Arrays [0.0]
We study the single photon transport properties in periodic and position-disordered Jaynes-Cummings arrays.
In the disordered case, we find that the single photon transmission curves show the disappearance of band formation.
The results of this work may find application in the study of quantum many-body effects in the optical domain.
arXiv Detail & Related papers (2024-01-26T22:32:21Z) - How single-photon nonlinearity is quenched with multiple quantum
emitters: Quantum Zeno effect in collective interactions with $\Lambda$-level
atoms [49.1574468325115]
We show that the single-photon nonlinearity vanishes with the number of emitters.
The mechanism behind this behavior is the quantum Zeno effect, manifested in the slowdown of the photon-controlled dynamics.
arXiv Detail & Related papers (2024-01-13T06:55:18Z) - Polarization dynamics of solid-state quantum emitters [32.54627168659622]
Quantum emitters in solid-state crystals have attracted a lot of attention due to their simple applicability in optical quantum technologies.
polarization of single photons generated by quantum emitters is one of the key parameters that play a crucial role in the applications.
arXiv Detail & Related papers (2023-03-08T17:18:15Z) - Resonant Parametric Photon Generation in Waveguide-coupled Quantum Emitter Arrays [83.88591755871734]
We have developed a theory of parametric photon generation in the waveguides coupled to arrays of quantum emitters with temporally modulated resonance frequencies.
Such generation can be interpreted as a dynamical Casimir effect.
We demonstrate numerically and analytically how the emission directionality and photon-photon correlations can be controlled by the phases of the modulation.
arXiv Detail & Related papers (2023-02-24T18:07:49Z) - Probing many-body correlations using quantum-cascade correlation
spectroscopy [0.0]
The radiative quantum cascade, i.e. the consecutive emission of photons from a ladder of energy levels, is of fundamental importance in quantum optics.
Here, we use exciton polaritons to explore the cascaded emission of photons in the regime where individual transitions of the ladder are not resolved.
Remarkably, the measured photon-photon correlations exhibit a strong dependence on the polariton energy, and therefore on the underlying polaritonic interaction strength.
arXiv Detail & Related papers (2022-12-18T09:51:12Z) - Fundamental limits of pulsed quantum light spectroscopy: Dipole moment
estimation [0.1529342790344802]
We study the limits of the precision of estimating parameters of a quantum matter system probed by a travelling pulse of quantum light.
Our work initiates a quantum information theoretic methodology for developing the theory and practice of quantum light spectroscopy.
arXiv Detail & Related papers (2022-10-03T16:32:08Z) - Superradiance in dynamically modulated Tavis-Cumming model with spectral
disorder [62.997667081978825]
Superradiance is the enhanced emission of photons from quantum emitters collectively coupling to the same optical mode.
We study the interplay between superradiance and spectral disorder in a dynamically modulated Tavis-Cummings model.
arXiv Detail & Related papers (2021-08-18T21:29:32Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.