論文の概要: How to Control the Error Rates of Binary Classifiers
- arxiv url: http://arxiv.org/abs/2010.11039v1
- Date: Wed, 21 Oct 2020 14:43:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-04 23:05:33.168393
- Title: How to Control the Error Rates of Binary Classifiers
- Title(参考訳): バイナリ分類器のエラー率の制御方法
- Authors: Milo\v{s} Simi\'c
- Abstract要約: 本稿では,二項分類を統計的テストに変換し,p値の分類を計算し,対象の誤差率を制限する方法を示す。
特に、二項分類器を統計検査に変換し、p-値の分類を計算し、対象の誤差率を制限する方法を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The traditional binary classification framework constructs classifiers which
may have good accuracy, but whose false positive and false negative error rates
are not under users' control. In many cases, one of the errors is more severe
and only the classifiers with the corresponding rate lower than the predefined
threshold are acceptable. In this study, we combine binary classification with
statistical hypothesis testing to control the target error rate of already
trained classifiers. In particular, we show how to turn binary classifiers into
statistical tests, calculate the classification p-values, and use them to limit
the target error rate.
- Abstract(参考訳): 従来のバイナリ分類フレームワークは、精度は良いが、偽陽性と偽陰性のエラー率がユーザの制御下にない分類器を構築する。
多くの場合、エラーの1つはより深刻であり、予め定義された閾値よりも低いレートの分類器のみが許容される。
本研究では,すでに訓練済みの分類器の目標誤差率を制御するために,二項分類と統計的仮説テストを組み合わせる。
特に、二項分類器を統計検査に変換し、p-値の分類を計算し、対象の誤差率を制限する方法を示す。
関連論文リスト
- Deep Imbalanced Regression via Hierarchical Classification Adjustment [50.19438850112964]
コンピュータビジョンにおける回帰タスクは、しばしば、対象空間をクラスに定量化することで分類される。
トレーニングサンプルの大多数は目標値の先頭にあるが、少数のサンプルは通常より広い尾幅に分布する。
不均衡回帰タスクを解くために階層型分類器を構築することを提案する。
不均衡回帰のための新しい階層型分類調整(HCA)は,3つのタスクにおいて優れた結果を示す。
論文 参考訳(メタデータ) (2023-10-26T04:54:39Z) - Probabilistic Safety Regions Via Finite Families of Scalable Classifiers [2.431537995108158]
監視された分類は、データのパターンを認識して、振る舞いのクラスを分離する。
正準解は、機械学習の数値近似の性質に固有の誤分類誤差を含む。
本稿では,確率論的安全性領域の概念を導入し,入力空間のサブセットとして,誤分類されたインスタンスの数を確率論的に制御する手法を提案する。
論文 参考訳(メタデータ) (2023-09-08T22:40:19Z) - The Impact of Using Regression Models to Build Defect Classifiers [13.840006058766766]
継続的欠陥数を欠陥クラスと非欠陥クラスに分類することは、よくあるプラクティスである。
両手法を用いて構築した欠陥分類器の性能と解釈を比較した。
論文 参考訳(メタデータ) (2022-02-12T22:12:55Z) - Is the Performance of My Deep Network Too Good to Be True? A Direct
Approach to Estimating the Bayes Error in Binary Classification [86.32752788233913]
分類問題において、ベイズ誤差は、最先端の性能を持つ分類器を評価するための基準として用いられる。
我々はベイズ誤差推定器を提案する。そこでは,クラスの不確かさを示すラベルの平均値のみを評価できる。
我々の柔軟なアプローチは、弱い教師付きデータであってもベイズ誤差を推定できる。
論文 参考訳(メタデータ) (2022-02-01T13:22:26Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
埋め込みネットワークに付加的なパラメータを必要としないtextitPrototypealを提案する。
プロトタイプは、訓練セットがクラス不均衡であるにもかかわらず、すべてのクラスに対してバランスと同等の予測を生成する。
我々は, CIFAR-10LT, CIFAR-100LT, Webvision のデータセットを用いて, プロトタイプが芸術の状況と比較した場合, サブスタンスの改善が得られることを検証した。
論文 参考訳(メタデータ) (2021-10-22T01:55:01Z) - Classification with Rejection Based on Cost-sensitive Classification [83.50402803131412]
学習のアンサンブルによる拒絶を用いた新しい分類法を提案する。
実験により, クリーン, ノイズ, 正の未ラベル分類における提案手法の有用性が示された。
論文 参考訳(メタデータ) (2020-10-22T14:05:05Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
ディープニューラルネットワークは教師付き学習タスクに有効であるが、脆弱であることが示されている。
本稿では、生成モデルを利用して、分類器が一般化に失敗するインスタンスを特定し、特徴付ける。
我々のアプローチは、トレーニングセットのクラスラベルに依存しないため、半教師付きでトレーニングされたモデルに適用できる。
論文 参考訳(メタデータ) (2020-10-05T22:13:21Z) - Classifier-independent Lower-Bounds for Adversarial Robustness [13.247278149124757]
理論的には、テストタイムの逆数と雑音の分類例に対するロバスト性の限界を解析する。
最適輸送理論を用いて、与えられた分類問題に対して分類器ができるベイズ最適誤差の変分式を導出する。
一般的な距離ベース攻撃の場合,ベイズ最適誤差に対して明らかな下限を導出する。
論文 参考訳(メタデータ) (2020-06-17T16:46:39Z) - Quantifying the Uncertainty of Precision Estimates for Rule based Text
Classifiers [0.0]
キーサブストリングの存在と欠如を利用して分類決定を行うルールベースの分類器は、それらの精度の不確かさを定量化する自然なメカニズムを持つ。
バイナリ分類器にとって重要な洞察は、文書によって誘導される部分弦集合の分割をベルヌーイ確率変数として扱うことである。
このアプローチの実用性は、ベンチマーク問題で実証されている。
論文 参考訳(メタデータ) (2020-05-19T03:51:47Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。