Deep Q-Network-based Adaptive Alert Threshold Selection Policy for
Payment Fraud Systems in Retail Banking
- URL: http://arxiv.org/abs/2010.11062v1
- Date: Wed, 21 Oct 2020 15:10:57 GMT
- Title: Deep Q-Network-based Adaptive Alert Threshold Selection Policy for
Payment Fraud Systems in Retail Banking
- Authors: Hongda Shen, Eren Kurshan
- Abstract summary: We propose an enhanced threshold selection policy for fraud alert systems.
The proposed approach formulates the threshold selection as a sequential decision making problem and uses Deep Q-Network based reinforcement learning.
Experimental results show that this adaptive approach outperforms the current static solutions by reducing the fraud losses as well as improving the operational efficiency of the alert system.
- Score: 9.13755431537592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning models have widely been used in fraud detection systems.
Most of the research and development efforts have been concentrated on
improving the performance of the fraud scoring models. Yet, the downstream
fraud alert systems still have limited to no model adoption and rely on manual
steps. Alert systems are pervasively used across all payment channels in retail
banking and play an important role in the overall fraud detection process.
Current fraud detection systems end up with large numbers of dropped alerts due
to their inability to account for the alert processing capacity. Ideally, alert
threshold selection enables the system to maximize the fraud detection while
balancing the upstream fraud scores and the available bandwidth of the alert
processing teams. However, in practice, fixed thresholds that are used for
their simplicity do not have this ability. In this paper, we propose an
enhanced threshold selection policy for fraud alert systems. The proposed
approach formulates the threshold selection as a sequential decision making
problem and uses Deep Q-Network based reinforcement learning. Experimental
results show that this adaptive approach outperforms the current static
solutions by reducing the fraud losses as well as improving the operational
efficiency of the alert system.
Related papers
- Proactive Fraud Defense: Machine Learning's Evolving Role in Protecting Against Online Fraud [0.0]
This paper explores the transformative role of machine learning in fraud detection and prevention.
It highlights the strengths of machine learning in processing vast datasets, identifying intricate fraud patterns, and providing real-time predictions.
It emphasizes the potential of machine learning to revolutionize fraud detection frameworks by making them more dynamic, efficient, and capable of handling the growing complexity of fraud across various industries.
arXiv Detail & Related papers (2024-10-26T21:34:28Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - Securing Transactions: A Hybrid Dependable Ensemble Machine Learning
Model using IHT-LR and Grid Search [2.4374097382908477]
We introduce a state-of-the-art hybrid ensemble (ENS) Machine learning (ML) model that intelligently combines multiple algorithms to enhance fraud identification.
Our experiments are conducted on a publicly available credit card dataset comprising 284,807 transactions.
The proposed model achieves impressive accuracy rates of 99.66%, 99.73%, 98.56%, and 99.79%, and a perfect 100% for the DT, RF, KNN, and ENS models, respectively.
arXiv Detail & Related papers (2024-02-22T09:01:42Z) - Utilizing GANs for Fraud Detection: Model Training with Synthetic
Transaction Data [0.0]
This paper explores the application of Generative Adversarial Networks (GANs) in fraud detection.
GANs have shown promise in modeling complex data distributions, making them effective tools for anomaly detection.
The study demonstrates the potential of GANs in enhancing transaction security through deep learning techniques.
arXiv Detail & Related papers (2024-02-15T09:48:20Z) - FRAUDability: Estimating Users' Susceptibility to Financial Fraud Using Adversarial Machine Learning [24.817067681746117]
We propose FRAUDability, a method for the estimation of a financial fraud detection system's performance for every user.
The proposed method produces scores, namely "fraudability scores," which are numerical estimations of a fraud detection system's ability to detect financial fraud for a specific user.
We show that the scores can also help attackers increase their financial profit by 54%, by engaging solely with users with high fraudability scores.
arXiv Detail & Related papers (2023-12-02T18:33:05Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
In this thesis, we focus on the design of an automatic algorithms that provide personalized ranking by adapting to the current conditions.
For the former, we propose novel algorithm called SAROS that take into account both kinds of feedback for learning over the sequence of interactions.
The proposed idea of taking into account the neighbour lines shows statistically significant results in comparison with the initial approach for faults detection in power grid.
arXiv Detail & Related papers (2022-05-13T21:09:41Z) - Application of Deep Reinforcement Learning to Payment Fraud [0.0]
A typical fraud detection system employs standard supervised learning methods where the focus is on maximizing the fraud recall rate.
We argue that such a formulation can lead to suboptimal solutions.
We formulate fraud detection as a sequential decision-making problem by including the utility within the model in the form of the reward function.
arXiv Detail & Related papers (2021-12-08T11:30:53Z) - Sample-Efficient Safety Assurances using Conformal Prediction [57.92013073974406]
Early warning systems can provide alerts when an unsafe situation is imminent.
To reliably improve safety, these warning systems should have a provable false negative rate.
We present a framework that combines a statistical inference technique known as conformal prediction with a simulator of robot/environment dynamics.
arXiv Detail & Related papers (2021-09-28T23:00:30Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
We propose a framework of relational graph convolutional networks methods for fraudulent behaviour prevention in the financial services of a Super-App.
We use an interpretability algorithm for graph neural networks to determine the most important relations to the classification task of the users.
Our results show that there is an added value when considering models that take advantage of the alternative data of the Super-App and the interactions found in their high connectivity.
arXiv Detail & Related papers (2021-07-29T00:02:06Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.