Transaction Fraud Detection via an Adaptive Graph Neural Network
- URL: http://arxiv.org/abs/2307.05633v1
- Date: Tue, 11 Jul 2023 07:48:39 GMT
- Title: Transaction Fraud Detection via an Adaptive Graph Neural Network
- Authors: Yue Tian, Guanjun Liu, Jiacun Wang, Mengchu Zhou
- Abstract summary: We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
- Score: 64.9428588496749
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many machine learning methods have been proposed to achieve accurate
transaction fraud detection, which is essential to the financial security of
individuals and banks. However, most existing methods leverage original
features only or require manual feature engineering. They lack the ability to
learn discriminative representations from transaction data. Moreover, criminals
often commit fraud by imitating cardholders' behaviors, which causes the poor
performance of existing detection models. In this paper, we propose an Adaptive
Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns
discriminative representations to improve the performance of transaction fraud
detection. A neighbor sampling strategy is performed to filter noisy nodes and
supplement information for fraudulent nodes. Specifically, we leverage cosine
similarity and edge weights to adaptively select neighbors with similar
behavior patterns for target nodes and then find multi-hop neighbors for
fraudulent nodes. A neighbor diversity metric is designed by calculating the
entropy among neighbors to tackle the camouflage issue of fraudsters and
explicitly alleviate the over-smoothing phenomena. Extensive experiments on
three real financial datasets demonstrate that the proposed method ASA-GNN
outperforms state-of-the-art ones.
Related papers
- Financial Fraud Detection using Jump-Attentive Graph Neural Networks [0.0]
A significant portion of the financial services sector employs various machine learning algorithms, such as XGBoost, Random Forest, and neural networks, to model transaction data.
We propose a novel algorithm that employs an efficient neighborhood sampling method, effective for camouflage detection and preserving crucial feature information from non-similar nodes.
arXiv Detail & Related papers (2024-11-07T05:12:51Z) - Utilizing GANs for Fraud Detection: Model Training with Synthetic
Transaction Data [0.0]
This paper explores the application of Generative Adversarial Networks (GANs) in fraud detection.
GANs have shown promise in modeling complex data distributions, making them effective tools for anomaly detection.
The study demonstrates the potential of GANs in enhancing transaction security through deep learning techniques.
arXiv Detail & Related papers (2024-02-15T09:48:20Z) - Transaction Fraud Detection via Spatial-Temporal-Aware Graph Transformer [5.043422340181098]
We propose a novel graph neural network called Spatial-Temporal-Aware Graph Transformer (STA-GT) for transaction fraud detection problems.
Specifically, we design a temporal encoding strategy to capture temporal dependencies and incorporate it into the graph neural network framework.
We introduce a transformer module to learn local and global information.
arXiv Detail & Related papers (2023-07-11T08:56:53Z) - The Devil is in the Conflict: Disentangled Information Graph Neural
Networks for Fraud Detection [17.254383007779616]
We argue that the performance degradation is mainly attributed to the inconsistency between topology and attribute.
We propose a simple and effective method that uses the attention mechanism to adaptively fuse two views.
Our model can significantly outperform stateof-the-art baselines on real-world fraud detection datasets.
arXiv Detail & Related papers (2022-10-22T08:21:49Z) - Deep Fraud Detection on Non-attributed Graph [61.636677596161235]
Graph Neural Networks (GNNs) have shown solid performance on fraud detection.
labeled data is scarce in large-scale industrial problems, especially for fraud detection.
We propose a novel graph pre-training strategy to leverage more unlabeled data.
arXiv Detail & Related papers (2021-10-04T03:42:09Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
We propose a framework of relational graph convolutional networks methods for fraudulent behaviour prevention in the financial services of a Super-App.
We use an interpretability algorithm for graph neural networks to determine the most important relations to the classification task of the users.
Our results show that there is an added value when considering models that take advantage of the alternative data of the Super-App and the interactions found in their high connectivity.
arXiv Detail & Related papers (2021-07-29T00:02:06Z) - How effective are Graph Neural Networks in Fraud Detection for Network
Data? [0.0]
Graph-based Neural Networks (GNNs) are recent models created for learning representations of nodes (and graphs)
Financial fraud stands out for its socioeconomic relevance and for presenting particular challenges, such as the extreme imbalance between the positive (fraud) and negative (legitimate transactions) classes.
We conduct experiments to evaluate existing techniques for detecting network fraud, considering the two previous challenges.
arXiv Detail & Related papers (2021-05-30T15:17:13Z) - Enhancing Graph Neural Network-based Fraud Detectors against Camouflaged
Fraudsters [78.53851936180348]
We introduce two types of camouflages based on recent empirical studies, i.e., the feature camouflage and the relation camouflage.
Existing GNNs have not addressed these two camouflages, which results in their poor performance in fraud detection problems.
We propose a new model named CAmouflage-REsistant GNN (CARE-GNN) to enhance the GNN aggregation process with three unique modules against camouflages.
arXiv Detail & Related papers (2020-08-19T22:33:12Z) - DFraud3- Multi-Component Fraud Detection freeof Cold-start [50.779498955162644]
The Cold-start is a significant problem referring to the failure of a detection system to recognize the authenticity of a new user.
In this paper, we model a review system as a Heterogeneous InformationNetwork (HIN) which enables a unique representation to every component.
HIN with graph induction helps to address the camouflage issue (fraudsterswith genuine reviews) which has shown to be more severe when it is coupled with cold-start, i.e., new fraudsters with genuine first reviews.
arXiv Detail & Related papers (2020-06-10T08:20:13Z) - Alleviating the Inconsistency Problem of Applying Graph Neural Network
to Fraud Detection [78.88163190021798]
We introduce a new GNN framework, $mathsfGraphConsis$, to tackle the inconsistency problem.
Empirical analysis on four datasets indicates the inconsistency problem is crucial in a fraud detection task.
We also released a GNN-based fraud detection toolbox with implementations of SOTA models.
arXiv Detail & Related papers (2020-05-01T21:43:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.