Lexicon generation for detecting fake news
- URL: http://arxiv.org/abs/2010.11089v1
- Date: Fri, 16 Oct 2020 20:39:57 GMT
- Title: Lexicon generation for detecting fake news
- Authors: U\u{g}ur Merto\u{g}lu, Burkay Gen\c{c}
- Abstract summary: We propose a method primarily based on lexicons including a scoring system to facilitate the detection of the fake news in Turkish.
We contribute to the literature by collecting a novel, large scale, and credible dataset of Turkish news, and by constructing the first fake news detection lexicon for Turkish.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the digitization of media, an immense amount of news data has been
generated by online sources, including mainstream media outlets as well as
social networks. However, the ease of production and distribution resulted in
circulation of fake news as well as credible, authentic news. The pervasive
dissemination of fake news has extreme negative impacts on individuals and
society. Therefore, fake news detection has recently become an emerging topic
as an interdisciplinary research field that is attracting significant attention
from many research disciplines, including social sciences and linguistics. In
this study, we propose a method primarily based on lexicons including a scoring
system to facilitate the detection of the fake news in Turkish. We contribute
to the literature by collecting a novel, large scale, and credible dataset of
Turkish news, and by constructing the first fake news detection lexicon for
Turkish.
Related papers
- A Revisit of Fake News Dataset with Augmented Fact-checking by ChatGPT [8.363702038073814]
Existing fake news detection datasets are sourced from human journalists.
In this paper, we revisit the existing fake news dataset verified by human journalists with augmented fact-checking by large language models.
arXiv Detail & Related papers (2023-12-19T05:46:11Z) - Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
We study the interplay between machine-(paraphrased) real news, machine-generated fake news, human-written fake news, and human-written real news.
Our experiments reveal an interesting pattern that detectors trained exclusively on human-written articles can indeed perform well at detecting machine-generated fake news, but not vice versa.
arXiv Detail & Related papers (2023-11-02T08:39:45Z) - fakenewsbr: A Fake News Detection Platform for Brazilian Portuguese [0.6775616141339018]
This paper presents a comprehensive study on detecting fake news in Brazilian Portuguese.
We propose a machine learning-based approach that leverages natural language processing techniques, including TF-IDF and Word2Vec.
We develop a user-friendly web platform, fakenewsbr.com, to facilitate the verification of news articles' veracity.
arXiv Detail & Related papers (2023-09-20T04:10:03Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
We propose to leverage a hypergraph to represent group-wise interaction among news, while focusing on important news relations with its dual-level attention mechanism.
Our approach yields remarkable performance and maintains the high performance even with a small subset of labeled news data.
arXiv Detail & Related papers (2022-12-24T00:19:32Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverse is a new feature based on multilingual evidence that can be used for fake news detection.
The hypothesis of the usage of cross-lingual evidence as a feature for fake news detection is confirmed.
arXiv Detail & Related papers (2022-11-25T18:24:17Z) - FALSE: Fake News Automatic and Lightweight Solution [0.20999222360659603]
In this paper, R code have been used to study and visualize a modern fake news dataset.
We use clustering, classification, correlation and various plots to analyze and present the data.
arXiv Detail & Related papers (2022-08-16T11:53:30Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
We propose a novel framework for generating training examples informed by the known styles and strategies of human-authored propaganda.
Specifically, we perform self-critical sequence training guided by natural language inference to ensure the validity of the generated articles.
Our experimental results show that fake news detectors trained on PropaNews are better at detecting human-written disinformation by 3.62 - 7.69% F1 score on two public datasets.
arXiv Detail & Related papers (2022-03-10T14:24:19Z) - A Study of Fake News Reading and Annotating in Social Media Context [1.0499611180329804]
We present an eye-tracking study, in which we let 44 lay participants to casually read through a social media feed containing posts with news articles, some of which were fake.
In a second run, we asked the participants to decide on the truthfulness of these articles.
We also describe a follow-up qualitative study with a similar scenario but this time with 7 expert fake news annotators.
arXiv Detail & Related papers (2021-09-26T08:11:17Z) - Stance Detection with BERT Embeddings for Credibility Analysis of
Information on Social Media [1.7616042687330642]
We propose a model for detecting fake news using stance as one of the features along with the content of the article.
Our work interprets the content with automatic feature extraction and the relevance of the text pieces.
The experiment conducted on the real-world dataset indicates that our model outperforms the previous work and enables fake news detection with an accuracy of 95.32%.
arXiv Detail & Related papers (2021-05-21T10:46:43Z) - User Preference-aware Fake News Detection [61.86175081368782]
Existing fake news detection algorithms focus on mining news content for deceptive signals.
We propose a new framework, UPFD, which simultaneously captures various signals from user preferences by joint content and graph modeling.
arXiv Detail & Related papers (2021-04-25T21:19:24Z) - How does Truth Evolve into Fake News? An Empirical Study of Fake News
Evolution [55.27685924751459]
We present the Fake News Evolution dataset: a new dataset tracking the fake news evolution process.
Our dataset is composed of 950 paired data, each of which consists of articles representing the truth, the fake news, and the evolved fake news.
We observe the features during the evolution and they are the disinformation techniques, text similarity, top 10 keywords, classification accuracy, parts of speech, and sentiment properties.
arXiv Detail & Related papers (2021-03-10T09:01:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.