論文の概要: Riemannian Langevin Algorithm for Solving Semidefinite Programs
- arxiv url: http://arxiv.org/abs/2010.11176v6
- Date: Mon, 19 Jun 2023 16:16:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 08:28:04.300441
- Title: Riemannian Langevin Algorithm for Solving Semidefinite Programs
- Title(参考訳): 半定値プログラムを解くためのリーマンランジュバンアルゴリズム
- Authors: Mufan Bill Li, Murat A. Erdogdu
- Abstract要約: 球面の積多様体上での非最適化とサンプリングのためのランゲヴィンに基づくアルゴリズムを提案する。
提案アルゴリズムは,高い確率で$epsilonの精度が得られることを示す。
- 参考スコア(独自算出の注目度): 9.340611077939828
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a Langevin diffusion-based algorithm for non-convex optimization
and sampling on a product manifold of spheres. Under a logarithmic Sobolev
inequality, we establish a guarantee for finite iteration convergence to the
Gibbs distribution in terms of Kullback--Leibler divergence. We show that with
an appropriate temperature choice, the suboptimality gap to the global minimum
is guaranteed to be arbitrarily small with high probability.
As an application, we consider the Burer--Monteiro approach for solving a
semidefinite program (SDP) with diagonal constraints, and analyze the proposed
Langevin algorithm for optimizing the non-convex objective. In particular, we
establish a logarithmic Sobolev inequality for the Burer--Monteiro problem when
there are no spurious local minima, but under the presence saddle points.
Combining the results, we then provide a global optimality guarantee for the
SDP and the Max-Cut problem. More precisely, we show that the Langevin
algorithm achieves $\epsilon$ accuracy with high probability in
$\widetilde{\Omega}( \epsilon^{-5} )$ iterations.
- Abstract(参考訳): 球面積多様体上での非凸最適化とサンプリングのためのランゲヴィン拡散に基づくアルゴリズムを提案する。
Under a logarithmic Sobolev inequality, we establish a guarantee for finite iteration convergence to the Gibbs distribution in terms of Kullback--Leibler divergence. We show that with an appropriate temperature choice, the suboptimality gap to the global minimum is guaranteed to be arbitrarily small with high probability. As an application, we consider the Burer--Monteiro approach for solving a semidefinite program (SDP) with diagonal constraints, and analyze the proposed Langevin algorithm for optimizing the non-convex objective.
特に、緩やかな局所ミニマが存在しないが、サドル点の存在下では、ブルア-モンテイロ問題に対する対数的ソボレフ不等式を確立する。
結果を組み合わせることで、SDPとMax-Cut問題に対するグローバルな最適性を保証する。
より正確には、Langevin アルゴリズムは $\epsilon$ accuracy を $\widetilde{\Omega}( \epsilon^{-5} )$ iterations で高い確率で達成することを示した。
関連論文リスト
- Faster Sampling via Stochastic Gradient Proximal Sampler [28.422547264326468]
非log-concave分布からのサンプリングのための近位サンプリング器 (SPS) について検討した。
対象分布への収束性は,アルゴリズムの軌道が有界である限り保証可能であることを示す。
我々は、Langevin dynamics(SGLD)とLangevin-MALAの2つの実装可能な変種を提供し、SPS-SGLDとSPS-MALAを生み出した。
論文 参考訳(メタデータ) (2024-05-27T00:53:18Z) - Symmetric Mean-field Langevin Dynamics for Distributional Minimax
Problems [78.96969465641024]
平均場ランゲヴィンのダイナミクスを、対称で証明可能な収束した更新で、初めて確率分布に対する最小の最適化に拡張する。
また,時間と粒子の離散化機構について検討し,カオス結果の新たな均一時間伝播を証明した。
論文 参考訳(メタデータ) (2023-12-02T13:01:29Z) - Decentralized Riemannian Algorithm for Nonconvex Minimax Problems [82.50374560598493]
ニューラルネットワークのためのミニマックスアルゴリズムは、多くの問題を解決するために開発された。
本稿では,2種類のミニマックスアルゴリズムを提案する。
そこで我々は, DRSGDAを提案し, 本手法が勾配を達成することを証明した。
論文 参考訳(メタデータ) (2023-02-08T01:42:45Z) - Kinetic Langevin MCMC Sampling Without Gradient Lipschitz Continuity --
the Strongly Convex Case [0.0]
目的がグローバルリプシッツであると仮定することなく,ハミルトン条件下での対数凹面分布からのサンプリングを検討する。
本稿では,多角勾配(テード)オイラースキームに基づく2つのアルゴリズムを提案し,各アルゴリズムのプロセスの法則と対象測度との間の非漸近的な2-ワッサーシュタイン距離を求める。
論文 参考訳(メタデータ) (2023-01-19T12:32:41Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
カーネルヒルベルト空間を用いて、無限水平割引マルコフ報酬過程の値関数を推定する。
我々は、関連するカーネル演算子の固有値に明示的に依存した誤差の非漸近上界を導出する。
MRP のサブクラスに対する minimax の下位境界を証明する。
論文 参考訳(メタデータ) (2021-09-24T14:48:20Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
この研究は、2-ワッサーシュタイン距離におけるサンプリング誤差の非同相解析のための一般的な枠組みを提供する。
我々の理論解析は数値実験によってさらに検証される。
論文 参考訳(メタデータ) (2021-09-08T18:00:05Z) - Projected Stochastic Gradient Langevin Algorithms for Constrained
Sampling and Non-Convex Learning [0.0]
ランジュバンアルゴリズムは付加ノイズを持つ手法である。
ランジュバンアルゴリズムは何十年もチェーンカルロ(ミロン)で使われてきた
学習にとって、それはそれがそれが事実であるということであり、それが事実であるということであり、それが事実であるということであり、それが事実であるということであり、それが事実であるということであり、それがそれが事実であるということであり、それがそれがそれが事実であるということであるということであるということが、それが事実であるということであるということが、それが事実であるということであることを示している。
論文 参考訳(メタデータ) (2020-12-22T16:19:20Z) - Faster Convergence of Stochastic Gradient Langevin Dynamics for
Non-Log-Concave Sampling [110.88857917726276]
我々は,非log-concaveとなる分布のクラスからサンプリングするために,勾配ランゲヴィンダイナミクス(SGLD)の新たな収束解析を行う。
我々のアプローチの核心は、補助的時間反転型マルコフ連鎖を用いたSGLDのコンダクタンス解析である。
論文 参考訳(メタデータ) (2020-10-19T15:23:18Z) - Primal Dual Interpretation of the Proximal Stochastic Gradient Langevin
Algorithm [11.80267432402723]
ログ凹型確率分布に対するサンプリングの課題を考察する。
対象の分布は、ワッサーシュタイン空間上で定義されるクルバック・リーバーの発散の最小値と見なすことができる。
ポテンシャルが強い凸であれば、PSGLA の複雑さは 2-ワッサーシュタイン距離の点で$O (1/varepsilon2)$である。
論文 参考訳(メタデータ) (2020-06-16T15:57:09Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
オンラインデータストリームによって生成される有限個の点からなるランダムな確率測度に対する人口推定バリセンタ問題を考察する。
本稿では,この問題の構造を用いて,凸凹型サドル点再構成を行う。
ランダム確率測度の分布が離散的な場合、最適化アルゴリズムを提案し、その複雑性を推定する。
論文 参考訳(メタデータ) (2020-06-11T19:40:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。