Network topology change-point detection from graph signals with prior
spectral signatures
- URL: http://arxiv.org/abs/2010.11345v1
- Date: Wed, 21 Oct 2020 23:21:37 GMT
- Title: Network topology change-point detection from graph signals with prior
spectral signatures
- Authors: Chiraag Kaushik, T. Mitchell Roddenberry, Santiago Segarra
- Abstract summary: We consider the problem of sequential graph topology change-point detection from graph signals.
We show how prior information on the spectral signature of the post-change graph can be incorporated to implicitly denoise the observed sequential data.
- Score: 28.854825611676507
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of sequential graph topology change-point detection
from graph signals. We assume that signals on the nodes of the graph are
regularized by the underlying graph structure via a graph filtering model,
which we then leverage to distill the graph topology change-point detection
problem to a subspace detection problem. We demonstrate how prior information
on the spectral signature of the post-change graph can be incorporated to
implicitly denoise the observed sequential data, thus leading to a natural
CUSUM-based algorithm for change-point detection. Numerical experiments
illustrate the performance of our proposed approach, particularly underscoring
the benefits of (potentially noisy) prior information.
Related papers
- Scoring Anomalous Vertices Through Quantum Walks [0.26013878609420266]
For unlabeled data, anomaly detection on graphs is a method to determine which data points do not posses the latent characteristics that is present in most other data.
We propose a first quantum algorithm to calculate the anomaly score of each node by continuously traversing the graph with a uniform starting position of all nodes.
arXiv Detail & Related papers (2023-11-16T12:32:13Z) - Towards Self-Interpretable Graph-Level Anomaly Detection [73.1152604947837]
Graph-level anomaly detection (GLAD) aims to identify graphs that exhibit notable dissimilarity compared to the majority in a collection.
We propose a Self-Interpretable Graph aNomaly dETection model ( SIGNET) that detects anomalous graphs as well as generates informative explanations simultaneously.
arXiv Detail & Related papers (2023-10-25T10:10:07Z) - Joint graph learning from Gaussian observations in the presence of
hidden nodes [26.133725549667734]
We propose a joint graph learning method that takes into account the presence of hidden (latent) variables.
We exploit the structure resulting from the previous considerations to propose a convex optimization problem.
We compare the proposed algorithm with different baselines and evaluate its performance over synthetic and real-world graphs.
arXiv Detail & Related papers (2022-12-04T13:03:41Z) - FoSR: First-order spectral rewiring for addressing oversquashing in GNNs [0.0]
Graph neural networks (GNNs) are able to leverage the structure of graph data by passing messages along the edges of the graph.
We propose a computationally efficient algorithm that prevents oversquashing by systematically adding edges to the graph.
We find experimentally that our algorithm outperforms existing graph rewiring methods in several graph classification tasks.
arXiv Detail & Related papers (2022-10-21T07:58:03Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
Graph-level anomaly detection (GAD) describes the problem of detecting graphs that are abnormal in their structure and/or the features of their nodes.
One of the challenges in GAD is to devise graph representations that enable the detection of both locally- and globally-anomalous graphs.
We introduce a novel deep anomaly detection approach for GAD that learns rich global and local normal pattern information by joint random distillation of graph and node representations.
arXiv Detail & Related papers (2021-12-19T05:04:53Z) - Joint inference of multiple graphs with hidden variables from stationary
graph signals [19.586429684209843]
We introduce a joint graph topology inference method that models the influence of the hidden variables.
Under the assumptions that the observed signals are stationary on the sought graphs, the joint estimation of multiple networks allows us to exploit such relationships.
arXiv Detail & Related papers (2021-10-05T21:31:36Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
Spectral graph convolutional networks (SGCNs) have been attracting increasing attention in graph representation learning.
We propose a novel class of spectral graph convolutional networks that implement graph convolutions with adaptive graph wavelets.
arXiv Detail & Related papers (2021-08-03T17:57:53Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Offline detection of change-points in the mean for stationary graph
signals [55.98760097296213]
We propose an offline method that relies on the concept of graph signal stationarity.
Our detector comes with a proof of a non-asymptotic inequality oracle.
arXiv Detail & Related papers (2020-06-18T15:51:38Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
We propose an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs.
In particular, we first extract the $h$-hop enclosing subgraph centered on the target edge and propose the node labeling function to identify the role of each node in the subgraph.
Based on the extracted features, we utilize Gated recurrent units (GRUs) to capture the temporal information for anomaly detection.
arXiv Detail & Related papers (2020-05-15T09:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.