A Spectral Interpretation of Redundancy in a Graph Reservoir
- URL: http://arxiv.org/abs/2507.12963v1
- Date: Thu, 17 Jul 2025 10:02:57 GMT
- Title: A Spectral Interpretation of Redundancy in a Graph Reservoir
- Authors: Anna Bison, Alessandro Sperduti,
- Abstract summary: This work revisits the definition of the reservoir in the Multiresolution Reservoir Graph Neural Network (MRGNN)<n>It proposes a variant based on a Fairing algorithm originally introduced in the field of surface design in computer graphics.<n>The core contribution of the paper lies in the theoretical analysis of the algorithm from a random walks perspective.
- Score: 51.40366905583043
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Reservoir computing has been successfully applied to graphs as a preprocessing method to improve the training efficiency of Graph Neural Networks (GNNs). However, a common issue that arises when repeatedly applying layer operators on graphs is over-smoothing, which consists in the convergence of graph signals toward low-frequency components of the graph Laplacian. This work revisits the definition of the reservoir in the Multiresolution Reservoir Graph Neural Network (MRGNN), a spectral reservoir model, and proposes a variant based on a Fairing algorithm originally introduced in the field of surface design in computer graphics. This algorithm provides a pass-band spectral filter that allows smoothing without shrinkage, and it can be adapted to the graph setting through the Laplacian operator. Given its spectral formulation, this method naturally connects to GNN architectures for tasks where smoothing, when properly controlled, can be beneficial,such as graph classification. The core contribution of the paper lies in the theoretical analysis of the algorithm from a random walks perspective. In particular, it shows how tuning the spectral coefficients can be interpreted as modulating the contribution of redundant random walks. Exploratory experiments based on the MRGNN architecture illustrate the potential of this approach and suggest promising directions for future research.
Related papers
- LASE: Learned Adjacency Spectral Embeddings [7.612218105739107]
We learn nodal Adjacency Spectral Embeddings (ASE) from graph inputs.<n>LASE is interpretable, parameter efficient, robust to inputs with unobserved edges.<n>LASE layers combine Graph Convolutional Network (GCN) and fully-connected Graph Attention Network (GAT) modules.
arXiv Detail & Related papers (2024-12-23T17:35:19Z) - ASWT-SGNN: Adaptive Spectral Wavelet Transform-based Self-Supervised
Graph Neural Network [20.924559944655392]
This paper proposes an Adaptive Spectral Wavelet Transform-based Self-Supervised Graph Neural Network (ASWT-SGNN)
ASWT-SGNN accurately approximates the filter function in high-density spectral regions, avoiding costly eigen-decomposition.
It achieves comparable performance to state-of-the-art models in node classification tasks.
arXiv Detail & Related papers (2023-12-10T03:07:42Z) - Graph Classification Gaussian Processes via Spectral Features [7.474662887810221]
Graph classification aims to categorise graphs based on their structure and node attributes.
In this work, we propose to tackle this task using tools from graph signal processing by deriving spectral features.
We show that even such a simple approach, having no learned parameters, can yield competitive performance compared to strong neural network and graph kernel baselines.
arXiv Detail & Related papers (2023-06-06T15:31:05Z) - Geometric Graph Filters and Neural Networks: Limit Properties and
Discriminability Trade-offs [122.06927400759021]
We study the relationship between a graph neural network (GNN) and a manifold neural network (MNN) when the graph is constructed from a set of points sampled from the manifold.
We prove non-asymptotic error bounds showing that convolutional filters and neural networks on these graphs converge to convolutional filters and neural networks on the continuous manifold.
arXiv Detail & Related papers (2023-05-29T08:27:17Z) - Pointspectrum: Equivariance Meets Laplacian Filtering for Graph
Representation Learning [3.7875603451557063]
Graph Representation Learning (GRL) has become essential for modern graph data mining and learning tasks.
While Graph Neural Networks (GNNs) have been used in state-of-the-art GRL architectures, they have been shown to suffer from over smoothing.
We propose PointSpectrum, a spectral method that incorporates a set equivariant network to account for a graph's structure.
arXiv Detail & Related papers (2021-09-06T10:59:11Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
Spectral graph convolutional networks (SGCNs) have been attracting increasing attention in graph representation learning.
We propose a novel class of spectral graph convolutional networks that implement graph convolutions with adaptive graph wavelets.
arXiv Detail & Related papers (2021-08-03T17:57:53Z) - Unrolling of Deep Graph Total Variation for Image Denoising [106.93258903150702]
In this paper, we combine classical graph signal filtering with deep feature learning into a competitive hybrid design.
We employ interpretable analytical low-pass graph filters and employ 80% fewer network parameters than state-of-the-art DL denoising scheme DnCNN.
arXiv Detail & Related papers (2020-10-21T20:04:22Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Graphon Pooling in Graph Neural Networks [169.09536309161314]
Graph neural networks (GNNs) have been used effectively in different applications involving the processing of signals on irregular structures modeled by graphs.
We propose a new strategy for pooling and sampling on GNNs using graphons which preserves the spectral properties of the graph.
arXiv Detail & Related papers (2020-03-03T21:04:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.