Deep Learning for Distinguishing Normal versus Abnormal Chest
Radiographs and Generalization to Unseen Diseases
- URL: http://arxiv.org/abs/2010.11375v2
- Date: Fri, 29 Oct 2021 22:20:37 GMT
- Title: Deep Learning for Distinguishing Normal versus Abnormal Chest
Radiographs and Generalization to Unseen Diseases
- Authors: Zaid Nabulsi, Andrew Sellergren, Shahar Jamshy, Charles Lau, Edward
Santos, Atilla P. Kiraly, Wenxing Ye, Jie Yang, Rory Pilgrim, Sahar
Kazemzadeh, Jin Yu, Sreenivasa Raju Kalidindi, Mozziyar Etemadi, Florencia
Garcia-Vicente, David Melnick, Greg S. Corrado, Lily Peng, Krish Eswaran,
Daniel Tse, Neeral Beladia, Yun Liu, Po-Hsuan Cameron Chen, Shravya Shetty
- Abstract summary: We developed and evaluated an AI system to classify CXRs as normal or abnormal.
Our results suggest that the AI system generalizes to new patient populations and abnormalities.
- Score: 7.93382570661604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chest radiography (CXR) is the most widely-used thoracic clinical imaging
modality and is crucial for guiding the management of cardiothoracic
conditions. The detection of specific CXR findings has been the main focus of
several artificial intelligence (AI) systems. However, the wide range of
possible CXR abnormalities makes it impractical to build specific systems to
detect every possible condition. In this work, we developed and evaluated an AI
system to classify CXRs as normal or abnormal. For development, we used a
de-identified dataset of 248,445 patients from a multi-city hospital network in
India. To assess generalizability, we evaluated our system using 6
international datasets from India, China, and the United States. Of these
datasets, 4 focused on diseases that the AI was not trained to detect: 2
datasets with tuberculosis and 2 datasets with coronavirus disease 2019. Our
results suggest that the AI system generalizes to new patient populations and
abnormalities. In a simulated workflow where the AI system prioritized abnormal
cases, the turnaround time for abnormal cases reduced by 7-28%. These results
represent an important step towards evaluating whether AI can be safely used to
flag cases in a general setting where previously unseen abnormalities exist.
Related papers
- AI-based Anomaly Detection for Clinical-Grade Histopathological Diagnostics [24.833696455985795]
In clinical reality, only few diseases are common, whereas the majority of diseases are less frequent.
Current AI models overlook or misclassify these diseases.
We propose a deep anomaly detection approach that only requires training data from common diseases to detect also all less frequent diseases.
arXiv Detail & Related papers (2024-06-21T04:59:19Z) - Artificial intelligence for abnormality detection in high volume neuroimaging: a systematic review and meta-analysis [0.5934394862891423]
Most studies evaluating artificial intelligence (AI) models that detect abnormalities in neuroimaging are tested on unrepresentative patient cohorts.
The aim was to determine the diagnostic test accuracy and summarise the evidence supporting the use of AI models performing first-line, high-volume neuroimaging tasks.
arXiv Detail & Related papers (2024-05-09T10:12:17Z) - Detection of subclinical atherosclerosis by image-based deep learning on chest x-ray [86.38767955626179]
Deep-learning algorithm to predict coronary artery calcium (CAC) score was developed on 460 chest x-ray.
The diagnostic accuracy of the AICAC model assessed by the area under the curve (AUC) was the primary outcome.
arXiv Detail & Related papers (2024-03-27T16:56:14Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - minoHealth.ai: A Clinical Evaluation Of Deep Learning Systems For the
Diagnosis of Pleural Effusion and Cardiomegaly In Ghana, Vietnam and the
United States of America [0.0]
We evaluate how well minoHealth.ai systems, developed my minoHealth AI Labs, will perform at diagnosing cardiomegaly and pleural effusion.
chest x-rays from Ghana, Vietnam and the USA, and how well AI systems will perform when compared with radiologists working in Ghana.
For cardiomegaly, minoHealth.ai systems scored Area under the Receiver operating characteristic Curve (AUC-ROC) of 0.9 and 0.97 while the AUC-ROC of individual radiologists ranged from 0.77 to 0.86.
arXiv Detail & Related papers (2022-10-31T20:12:41Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
Unsupervised anomaly detection (UAD) can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples.
This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA)
The proposed pipeline achieved a Dice score of 0.642$pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$pm$0.112 while detecting artificially induced anomalies.
arXiv Detail & Related papers (2022-01-31T14:27:35Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
Deep learning models have been developed to identify COVID-19 from chest X-rays.
Results have been exceptional when training and testing on open-source data.
Data analysis and model evaluations show that the popular open-source dataset COVIDx is not representative of the real clinical problem.
arXiv Detail & Related papers (2021-09-14T10:59:11Z) - A clinical validation of VinDr-CXR, an AI system for detecting abnormal
chest radiographs [0.0]
We demonstrate a mechanism for validating an AI-based system for detecting abnormalities on X-ray scans.
The system achieves an F1 score - the harmonic average of the recall and the precision - of 0.653 CI 0.635, 0.671) for detecting any abnormalities on chest X-rays.
arXiv Detail & Related papers (2021-04-06T02:53:35Z) - Clinical prediction system of complications among COVID-19 patients: a
development and validation retrospective multicentre study [0.3569980414613667]
We used data collected from 3,352 COVID-19 patient encounters admitted to 18 facilities between April 1 and April 30, 2020 in Abu Dhabi (AD), UAE.
Using data collected during the first 24 hours of admission, the machine learning-based prognostic system predicts the risk of developing any of seven complications during the hospital stay.
The system achieves good accuracy across all complications and both regions.
arXiv Detail & Related papers (2020-11-28T18:16:23Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.