UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data
- URL: http://arxiv.org/abs/2010.11389v2
- Date: Sun, 25 Apr 2021 20:47:36 GMT
- Title: UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data
- Authors: Chacha Chen, Junjie Liang, Fenglong Ma, Lucas M. Glass, Jimeng Sun and
Cao Xiao
- Abstract summary: We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
- Score: 81.00385374948125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Successful health risk prediction demands accuracy and reliability of the
model. Existing predictive models mainly depend on mining electronic health
records (EHR) with advanced deep learning techniques to improve model accuracy.
However, they all ignore the importance of publicly available online health
data, especially socioeconomic status, environmental factors, and detailed
demographic information for each location, which are all strong predictive
signals and can definitely augment precision medicine. To achieve model
reliability, the model needs to provide accurate prediction and uncertainty
score of the prediction. However, existing uncertainty estimation approaches
often failed in handling high-dimensional data, which are present in
multi-sourced data. To fill the gap, we propose UNcertaInTy-based hEalth risk
prediction (UNITE) model. Building upon an adaptive multimodal deep kernel and
a stochastic variational inference module, UNITE provides accurate disease risk
prediction and uncertainty estimation leveraging multi-sourced health data
including EHR data, patient demographics, and public health data collected from
the web. We evaluate UNITE on real-world disease risk prediction tasks:
nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD). UNITE
achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for
NASH detection, and outperforms various state-of-the-art baselines by up to
$19\%$ over the best baseline. We also show UNITE can model meaningful
uncertainties and can provide evidence-based clinical support by clustering
similar patients.
Related papers
- SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Inadequacy of common stochastic neural networks for reliable clinical
decision support [0.4262974002462632]
Widespread adoption of AI for medical decision making is still hindered due to ethical and safety-related concerns.
Common deep learning approaches, however, have the tendency towards overconfidence under data shift.
This study investigates their actual reliability in clinical applications.
arXiv Detail & Related papers (2024-01-24T18:49:30Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Modeling Disagreement in Automatic Data Labelling for Semi-Supervised
Learning in Clinical Natural Language Processing [2.016042047576802]
We investigate the quality of uncertainty estimates from a range of current state-of-the-art predictive models applied to the problem of observation detection in radiology reports.
arXiv Detail & Related papers (2022-05-29T20:20:49Z) - A New Approach for Interpretability and Reliability in Clinical Risk
Prediction: Acute Coronary Syndrome Scenario [0.33927193323747895]
We intend to create a new risk assessment methodology that combines the best characteristics of both risk score and machine learning models.
The proposed approach achieved testing results identical to the standard LR, but offers superior interpretability and personalization.
The reliability estimation of individual predictions presented a great correlation with the misclassifications rate.
arXiv Detail & Related papers (2021-10-15T19:33:46Z) - Estimating the Uncertainty of Neural Network Forecasts for Influenza
Prevalence Using Web Search Activity [3.632189127068905]
Influenza is an infectious disease with the potential to become a pandemic.
Forecasting its prevalence is an important undertaking for planning an effective response.
arXiv Detail & Related papers (2021-05-26T09:45:23Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.