Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty
- URL: http://arxiv.org/abs/2301.00349v3
- Date: Sun, 14 Apr 2024 03:59:35 GMT
- Title: Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty
- Authors: Ke Zou, Yidi Chen, Ling Huang, Xuedong Yuan, Xiaojing Shen, Meng Wang, Rick Siow Mong Goh, Yong Liu, Huazhu Fu,
- Abstract summary: We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
- Score: 52.03490691733464
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image segmentation is critical for disease diagnosis and treatment assessment. However, concerns regarding the reliability of segmentation regions persist among clinicians, mainly attributed to the absence of confidence assessment, robustness, and calibration to accuracy. To address this, we introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks. DEviS not only enhances the calibration and robustness of baseline segmentation accuracy but also provides high-efficiency uncertainty estimation for reliable predictions. By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation. Here, the Dirichlet distribution parameterizes the distribution of probabilities for different classes of the segmentation results. To generate calibrated predictions and uncertainty, we develop a trainable calibrated uncertainty penalty. Furthermore, DEviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data within the dataset. We conducted validation studies to assess both the accuracy and robustness of DEviS segmentation, along with evaluating the efficiency and reliability of uncertainty estimation. These evaluations were performed using publicly available datasets including ISIC2018, LiTS2017, and BraTS2019. Additionally, two potential clinical trials are being conducted at Johns Hopkins OCT, Duke-OCT-DME, and FIVES datasets to demonstrate their efficacy in filtering high-quality or out-of-distribution data. Our code has been released in https://github.com/Cocofeat/DEviS.
Related papers
- Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
Conformal prediction provides model-agnostic and distribution-free uncertainty quantification.
Yet, conformal prediction is not reliable under poisoning attacks where adversaries manipulate both training and calibration data.
We propose reliable prediction sets (RPS): the first efficient method for constructing conformal prediction sets with provable reliability guarantees under poisoning.
arXiv Detail & Related papers (2024-10-13T15:37:11Z) - Predictive Accuracy-Based Active Learning for Medical Image Segmentation [5.25147264940975]
We propose an efficient Predictive Accuracy-based Active Learning (PAAL) method for medical image segmentation.
PAAL consists of an Accuracy Predictor (AP) and a Weighted Polling Strategy (WPS)
Experiment results on multiple datasets demonstrate the superiority of PAAL.
arXiv Detail & Related papers (2024-05-01T11:12:08Z) - EDUE: Expert Disagreement-Guided One-Pass Uncertainty Estimation for Medical Image Segmentation [1.757276115858037]
This paper proposes an Expert Disagreement-Guided Uncertainty Estimation (EDUE) for medical image segmentation.
By leveraging variability in ground-truth annotations from multiple raters, we guide the model during training and incorporate random sampling-based strategies to enhance calibration confidence.
arXiv Detail & Related papers (2024-03-25T10:13:52Z) - Improving Robustness and Reliability in Medical Image Classification with Latent-Guided Diffusion and Nested-Ensembles [4.249986624493547]
Ensemble deep learning has been shown to achieve high predictive accuracy and uncertainty estimation.
perturbations in the input images at test time can still lead to significant performance degradation.
LaDiNE is a novel and robust probabilistic method that is capable of inferring informative and invariant latent variables from the input images.
arXiv Detail & Related papers (2023-10-24T15:53:07Z) - BSM loss: A superior way in modeling aleatory uncertainty of
fine_grained classification [0.0]
We propose a modified Bootstrapping loss(BS loss) function with Mixup data augmentation strategy.
Our experiments indicated that BS loss with Mixup(BSM) model can halve the Expected Error(ECE) compared to standard data augmentation.
BSM model is able to perceive the semantic distance of out-of-domain data, demonstrating high potential in real-world clinical practice.
arXiv Detail & Related papers (2022-06-09T13:06:51Z) - Bayesian autoencoders with uncertainty quantification: Towards
trustworthy anomaly detection [78.24964622317634]
In this work, the formulation of Bayesian autoencoders (BAEs) is adopted to quantify the total anomaly uncertainty.
To evaluate the quality of uncertainty, we consider the task of classifying anomalies with the additional option of rejecting predictions of high uncertainty.
Our experiments demonstrate the effectiveness of the BAE and total anomaly uncertainty on a set of benchmark datasets and two real datasets for manufacturing.
arXiv Detail & Related papers (2022-02-25T12:20:04Z) - Trustworthy Medical Segmentation with Uncertainty Estimation [0.7829352305480285]
This paper introduces a new Bayesian deep learning framework for uncertainty quantification in segmentation neural networks.
We evaluate the proposed framework on medical image segmentation data from Magnetic Resonances Imaging and Computed Tomography scans.
Our experiments on multiple benchmark datasets demonstrate that the proposed framework is more robust to noise and adversarial attacks as compared to state-of-the-art segmentation models.
arXiv Detail & Related papers (2021-11-10T22:46:05Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
We propose an uncertainty-guided dual-consistency learning network (UDC-Net) for semi-supervised COVID-19 lesion segmentation from CT images.
Our proposed UDC-Net improves the fully supervised method by 6.3% in Dice and outperforms other competitive semi-supervised approaches by significant margins.
arXiv Detail & Related papers (2021-04-07T16:23:35Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.