論文の概要: Contrastive Self-Supervised Learning for Wireless Power Control
- arxiv url: http://arxiv.org/abs/2010.11909v2
- Date: Thu, 11 Feb 2021 19:50:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-04 06:22:54.861402
- Title: Contrastive Self-Supervised Learning for Wireless Power Control
- Title(参考訳): 無線電力制御のためのコントラスト自己監督学習
- Authors: Navid Naderializadeh
- Abstract要約: 自己教師付き学習を用いた無線ネットワークにおける電力制御の新しい手法を提案する。
チャネル行列を入力として、制御決定をバックボーンとヘッドに出力する多層パーセプトロンを分割する。
- 参考スコア(独自算出の注目度): 12.977865337365856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new approach for power control in wireless networks using
self-supervised learning. We partition a multi-layer perceptron that takes as
input the channel matrix and outputs the power control decisions into a
backbone and a head, and we show how we can use contrastive learning to
pre-train the backbone so that it produces similar embeddings at its output for
similar channel matrices and vice versa, where similarity is defined in an
information-theoretic sense by identifying the interference links that can be
optimally treated as noise. The backbone and the head are then fine-tuned using
a limited number of labeled samples. Simulation results show the effectiveness
of the proposed approach, demonstrating significant gains over pure supervised
learning methods in both sum-throughput and sample efficiency.
- Abstract(参考訳): 自己教師付き学習を用いた無線ネットワークにおける電力制御の新しい手法を提案する。
我々は、チャネル行列を入力として、電力制御決定をバックボーンとヘッドに出力する多層パーセプトロンを分割し、コントラスト学習を用いて、類似したチャネル行列に対して出力に類似した埋め込みを発生させることができることを示す。
バックボーンとヘッドは限られた数のラベル付きサンプルを使用して微調整される。
シミュレーションの結果,提案手法の有効性が示され,要約処理とサンプル効率の両方において,純粋教師付き学習法よりも有意な効果が示された。
関連論文リスト
- Unsupervised learning based end-to-end delayless generative fixed-filter
active noise control [22.809445468752262]
遅延のないノイズ制御は、我々の初期の生成固定フィルタアクティブノイズ制御(GFANC)フレームワークによって実現されている。
コプロセッサの1次元畳み込みニューラルネットワーク(1D CNN)は、ラベル付きノイズデータセットを使用した初期トレーニングを必要とする。
本稿では,1次元CNNトレーニングプロセスを簡素化し,その実用性を高めるために,教師なしGFANCアプローチを提案する。
論文 参考訳(メタデータ) (2024-02-08T06:14:12Z) - From Pretext to Purpose: Batch-Adaptive Self-Supervised Learning [32.18543787821028]
本稿では,自己教師付きコントラスト学習におけるバッチ融合の適応的手法を提案する。
公平な比較で最先端のパフォーマンスを達成する。
提案手法は,データ駆動型自己教師型学習研究の進展に寄与する可能性が示唆された。
論文 参考訳(メタデータ) (2023-11-16T15:47:49Z) - Observation-Guided Diffusion Probabilistic Models [41.749374023639156]
観測誘導拡散確率モデル(OGDM)と呼ばれる新しい拡散に基づく画像生成法を提案する。
本手法は,観測プロセスの指導をマルコフ連鎖と統合することにより,トレーニング目標を再構築する。
本研究では,強力な拡散モデルベースライン上での多様な推論手法を用いたトレーニングアルゴリズムの有効性を示す。
論文 参考訳(メタデータ) (2023-10-06T06:29:06Z) - Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning [92.18524491615548]
対照的な自己指導型学習は、(深層)強化学習(RL)の実践にうまく統合されている
我々は,低ランク遷移を伴うマルコフ決定過程(MDP)とマルコフゲーム(MG)のクラスにおいて,コントラスト学習によってRLをどのように強化できるかを検討する。
オンライン環境下では,MDPやMGのオンラインRLアルゴリズムと対照的な損失を生かした,新しい高信頼境界(UCB)型アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-07-29T17:29:08Z) - Wireless Link Scheduling via Graph Representation Learning: A
Comparative Study of Different Supervision Levels [4.264192013842096]
本稿では,無線干渉ネットワークにおける二元電力制御(リンクスケジューリング)の問題点を考察し,グラフ表現学習を用いて電力制御ポリシーを訓練する。
ノードの埋め込みは、教師なし、教師なし、自己教師なしの学習など、様々な方法で訓練できることを示す。
論文 参考訳(メタデータ) (2021-10-04T21:22:12Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
大規模マルチインプット・マルチアウトプット(MIMO)システムにおけるダウンリンク(DL)チャネル推定について検討する。
一般的なアプローチは、チャネル硬化によって動機付けられた推定値として平均値を使用することである。
本稿では2つの新しい推定法を提案する。
論文 参考訳(メタデータ) (2021-09-06T13:42:32Z) - Is Disentanglement enough? On Latent Representations for Controllable
Music Generation [78.8942067357231]
強い生成デコーダが存在しない場合、アンタングル化は必ずしも制御性を意味するものではない。
VAEデコーダに対する潜伏空間の構造は、異なる属性を操作するための生成モデルの能力を高める上で重要な役割を果たす。
論文 参考訳(メタデータ) (2021-08-01T18:37:43Z) - Diffusion-Based Representation Learning [65.55681678004038]
教師付き信号のない表現学習を実現するために,デノナイズスコアマッチングフレームワークを拡張した。
対照的に、拡散に基づく表現学習は、デノナイジングスコアマッチング目的の新しい定式化に依存している。
同じ手法を用いて,半教師付き画像分類における最先端モデルの改善を実現する無限次元潜在符号の学習を提案する。
論文 参考訳(メタデータ) (2021-05-29T09:26:02Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Operation-Aware Soft Channel Pruning using Differentiable Masks [51.04085547997066]
本稿では,データ駆動型アルゴリズムを提案する。このアルゴリズムは,操作特性を利用して,ディープニューラルネットワークを異なる方法で圧縮する。
我々は大規模な実験を行い、出力ネットワークの精度で優れた性能を達成する。
論文 参考訳(メタデータ) (2020-07-08T07:44:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。