論文の概要: mT5: A massively multilingual pre-trained text-to-text transformer
- arxiv url: http://arxiv.org/abs/2010.11934v3
- Date: Thu, 11 Mar 2021 18:45:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-04 06:39:56.911837
- Title: mT5: A massively multilingual pre-trained text-to-text transformer
- Title(参考訳): mt5:多言語で事前学習されたテキストからテキストへのトランスフォーマー
- Authors: Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou,
Aditya Siddhant, Aditya Barua, Colin Raffel
- Abstract要約: The Text-to-Text Transfer Transformer (T5) は、統一されたテキスト・トゥ・テキストフォーマットとスケールを利用して、英語のNLPタスクで最先端の結果を得る。
101言語をカバーする新しいCommon Crawlベースのデータセットで事前トレーニングを行ったマルチ言語版T5であるmT5を紹介する。
- 参考スコア(独自算出の注目度): 60.0210636815514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent "Text-to-Text Transfer Transformer" (T5) leveraged a unified
text-to-text format and scale to attain state-of-the-art results on a wide
variety of English-language NLP tasks. In this paper, we introduce mT5, a
multilingual variant of T5 that was pre-trained on a new Common Crawl-based
dataset covering 101 languages. We detail the design and modified training of
mT5 and demonstrate its state-of-the-art performance on many multilingual
benchmarks. We also describe a simple technique to prevent "accidental
translation" in the zero-shot setting, where a generative model chooses to
(partially) translate its prediction into the wrong language. All of the code
and model checkpoints used in this work are publicly available.
- Abstract(参考訳): 最近の"Text-to-Text Transfer Transformer" (T5)は、統一されたテキストからテキストへのフォーマットとスケールを利用して、様々な英語のNLPタスクで最先端の結果を得る。
本稿では,101言語をカバーする新しいCommon Crawlベースのデータセットで事前学習した多言語版T5であるmT5を紹介する。
我々はmT5の設計と修正について詳述し、多くの多言語ベンチマークでその最先端性能を示す。
また、ゼロショット設定において、生成モデルがその予測を(部分的に)間違った言語に翻訳する「事故翻訳」を防ぐための簡単な手法についても述べる。
この作業で使用されるコードとモデルチェックポイントはすべて公開されています。
関連論文リスト
- Multilingual E5 Text Embeddings: A Technical Report [63.503320030117145]
異なるサイズの3つの埋め込みモデルを提供し、推論効率と埋め込み品質のバランスを提供する。
そこで我々は,新しい命令調整型埋め込みモデルを導入し,その性能は類似サイズの最先端の英語のみのモデルと同等である。
論文 参考訳(メタデータ) (2024-02-08T13:47:50Z) - A Text-to-Text Model for Multilingual Offensive Language Identification [19.23565690468299]
本研究では,テキスト・トゥ・テキスト・トランスフォーマを用いた攻撃的言語識別のためのエンコーダ・デコーダアーキテクチャを用いた最初の事前学習モデルを提案する(T5)。
我々の事前学習されたT5モデルは、複数の英語ベンチマークにおいて、fBERTやHateBERTのような攻撃的言語検出のために微調整された他のトランスフォーマーベースモデルよりも優れている。
同様のアプローチで、mT5を用いて攻撃的言語識別のための最初の多言語事前訓練モデルを訓練する。
論文 参考訳(メタデータ) (2023-12-06T09:37:27Z) - mmT5: Modular Multilingual Pre-Training Solves Source Language
Hallucinations [54.42422445568523]
mmT5はモジュール型多言語シーケンス・ツー・シーケンスモデルである。
言語固有の情報を言語に依存しない情報から切り離す。
mT5と比較して、mT5はゼロショット設定で正しい言語でテキストを生成する率を7%から99%に向上させる。
論文 参考訳(メタデータ) (2023-05-23T16:38:01Z) - idT5: Indonesian Version of Multilingual T5 Transformer [0.0]
インドネシア語は2億人近い人々によって話されており、世界で10番目に話されている言語である。
本研究では,mT5モデルがインドネシア語にのみ適用され,インドネシア語のみに限定した訓練済みのT5モデルが得られた。
本モデルに基づく微調整モデルでは,SAでは77.18%,mT5モデルより8%高い精度を示し,QGおよびQAではmT5モデルとほぼ同じスコアを得た。
論文 参考訳(メタデータ) (2023-02-02T03:56:16Z) - Evaluating Byte and Wordpiece Level Models for Massively Multilingual
Semantic Parsing [3.431659287330068]
バイトレベル(ByT5)とワードピースベース(mT5)をMASSIVE多言語意味解析データセットの51言語におけるシーケンスモデルと比較する。
すべての言語からのゴールドデータに基づいてトレーニングされたモデルに対して、正確なマッチング精度のギャップを5ポイントに縮めることができます。
論文 参考訳(メタデータ) (2022-12-14T13:48:32Z) - T5lephone: Bridging Speech and Text Self-supervised Models for Spoken
Language Understanding via Phoneme level T5 [65.32642587901903]
我々は、異なるトークン化戦略を持つPLMが音声言語理解タスクにどのように影響するかを広範囲に研究する。
我々は、音素化されたテキストを使って事前訓練されたT5の変種であるT5lephoneを作成するためのアイデアを拡張した。
論文 参考訳(メタデータ) (2022-11-01T17:00:23Z) - Evaluation of Transfer Learning for Polish with a Text-to-Text Model [54.81823151748415]
ポーランド語におけるテキスト・テキスト・モデルの質を評価するための新しいベンチマークを導入する。
KLEJベンチマークはテキスト・トゥ・テキスト、en-pl翻訳、要約、質問応答に適応している。
本稿では,ポーランド語のための汎用テキスト・テキスト・ツー・テキスト・モデルであるplT5について述べる。
論文 参考訳(メタデータ) (2022-05-18T09:17:14Z) - AraT5: Text-to-Text Transformers for Arabic Language Understanding and
Generation [6.021269454707625]
アラビア語生成のための新しいベンチマーク(ARGEN)を導入する。
アラビア語固有のテキスト・トゥ・テキスト・トランスフォーマーベースの3つのモデルを事前学習し、2つのベンチマークで評価する。
我々の新しいモデルはmT5よりも大幅に優れており、アラビア語の理解に基づいて現在最先端のアラビア語 BERT ベースのモデルである MARBERT よりも優れている。
論文 参考訳(メタデータ) (2021-08-31T02:02:10Z) - mT6: Multilingual Pretrained Text-to-Text Transformer with Translation
Pairs [51.67970832510462]
翻訳ペア(mt6)を用いた多言語テキスト間トランスフォーマーの改良
本研究では,機械翻訳,翻訳ペアスパン破壊,翻訳スパン破壊という3つの言語間事前学習タスクについて検討した。
実験の結果,mT6はmT5よりも舌間移動性が向上することがわかった。
論文 参考訳(メタデータ) (2021-04-18T03:24:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。