Bridging Imagination and Reality for Model-Based Deep Reinforcement
Learning
- URL: http://arxiv.org/abs/2010.12142v1
- Date: Fri, 23 Oct 2020 03:22:01 GMT
- Title: Bridging Imagination and Reality for Model-Based Deep Reinforcement
Learning
- Authors: Guangxiang Zhu, Minghao Zhang, Honglak Lee, Chongjie Zhang
- Abstract summary: We propose a novel model-based reinforcement learning algorithm, called BrIdging Reality and Dream (BIRD)
It maximizes the mutual information between imaginary and real trajectories so that the policy improvement learned from imaginary trajectories can be easily generalized to real trajectories.
We demonstrate that our approach improves sample efficiency of model-based planning, and achieves state-of-the-art performance on challenging visual control benchmarks.
- Score: 72.18725551199842
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sample efficiency has been one of the major challenges for deep reinforcement
learning. Recently, model-based reinforcement learning has been proposed to
address this challenge by performing planning on imaginary trajectories with a
learned world model. However, world model learning may suffer from overfitting
to training trajectories, and thus model-based value estimation and policy
search will be pone to be sucked in an inferior local policy. In this paper, we
propose a novel model-based reinforcement learning algorithm, called BrIdging
Reality and Dream (BIRD). It maximizes the mutual information between imaginary
and real trajectories so that the policy improvement learned from imaginary
trajectories can be easily generalized to real trajectories. We demonstrate
that our approach improves sample efficiency of model-based planning, and
achieves state-of-the-art performance on challenging visual control benchmarks.
Related papers
- ReCoRe: Regularized Contrastive Representation Learning of World Model [21.29132219042405]
We present a world model that learns invariant features using contrastive unsupervised learning and an intervention-invariant regularizer.
Our method outperforms current state-of-the-art model-based and model-free RL methods and significantly improves on out-of-distribution point navigation tasks evaluated on the iGibson benchmark.
arXiv Detail & Related papers (2023-12-14T15:53:07Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
Vision foundation models exhibit impressive power, benefiting from the extremely large model capacity and broad training data.
However, in practice, downstream scenarios may only support a small model due to the limited computational resources or efficiency considerations.
This brings a critical challenge for the real-world application of foundation models: one has to transfer the knowledge of a foundation model to the downstream task.
arXiv Detail & Related papers (2023-04-05T07:28:33Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z) - Planning with Diffusion for Flexible Behavior Synthesis [125.24438991142573]
We consider what it would look like to fold as much of the trajectory optimization pipeline as possible into the modeling problem.
The core of our technical approach lies in a diffusion probabilistic model that plans by iteratively denoising trajectories.
arXiv Detail & Related papers (2022-05-20T07:02:03Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
We propose a novel dynamic substitute training attack method to encourage substitute model to learn better and faster from the target model.
We introduce a task-driven graph-based structure information learning constrain to improve the quality of generated training data.
arXiv Detail & Related papers (2022-04-03T02:29:11Z) - Imaginary Hindsight Experience Replay: Curious Model-based Learning for
Sparse Reward Tasks [9.078290260836706]
We propose a model-based method tailored for sparse-reward tasks that foregoes the need for complicated reward engineering.
This approach, termed Imaginary Hindsight Experience Replay, minimises real-world interactions by incorporating imaginary data into policy updates.
Upon evaluation, this approach provides an order of magnitude increase in data-efficiency on average versus the state-of-the-art model-free method in the benchmark OpenAI Gym Fetch Robotics tasks.
arXiv Detail & Related papers (2021-10-05T23:38:31Z) - Discriminator Augmented Model-Based Reinforcement Learning [47.094522301093775]
It is common in practice for the learned model to be inaccurate, impairing planning and leading to poor performance.
This paper aims to improve planning with an importance sampling framework that accounts for discrepancy between the true and learned dynamics.
arXiv Detail & Related papers (2021-03-24T06:01:55Z) - Model-based Meta Reinforcement Learning using Graph Structured Surrogate
Models [40.08137765886609]
We show that our model, called a graph structured surrogate model (GSSM), outperforms state-of-the-art methods in predicting environment dynamics.
Our approach is able to obtain high returns, while allowing fast execution during deployment by avoiding test time policy gradient optimization.
arXiv Detail & Related papers (2021-02-16T17:21:55Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.