Imaginary Hindsight Experience Replay: Curious Model-based Learning for
Sparse Reward Tasks
- URL: http://arxiv.org/abs/2110.02414v2
- Date: Wed, 9 Aug 2023 09:29:26 GMT
- Title: Imaginary Hindsight Experience Replay: Curious Model-based Learning for
Sparse Reward Tasks
- Authors: Robert McCarthy, Qiang Wang, Stephen J. Redmond
- Abstract summary: We propose a model-based method tailored for sparse-reward tasks that foregoes the need for complicated reward engineering.
This approach, termed Imaginary Hindsight Experience Replay, minimises real-world interactions by incorporating imaginary data into policy updates.
Upon evaluation, this approach provides an order of magnitude increase in data-efficiency on average versus the state-of-the-art model-free method in the benchmark OpenAI Gym Fetch Robotics tasks.
- Score: 9.078290260836706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model-based reinforcement learning is a promising learning strategy for
practical robotic applications due to its improved data-efficiency versus
model-free counterparts. However, current state-of-the-art model-based methods
rely on shaped reward signals, which can be difficult to design and implement.
To remedy this, we propose a simple model-based method tailored for
sparse-reward multi-goal tasks that foregoes the need for complicated reward
engineering. This approach, termed Imaginary Hindsight Experience Replay,
minimises real-world interactions by incorporating imaginary data into policy
updates. To improve exploration in the sparse-reward setting, the policy is
trained with standard Hindsight Experience Replay and endowed with
curiosity-based intrinsic rewards. Upon evaluation, this approach provides an
order of magnitude increase in data-efficiency on average versus the
state-of-the-art model-free method in the benchmark OpenAI Gym Fetch Robotics
tasks.
Related papers
- Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment [65.15914284008973]
We propose to leverage an Inverse Reinforcement Learning (IRL) technique to simultaneously build an reward model and a policy model.
We show that the proposed algorithms converge to the stationary solutions of the IRL problem.
Our results indicate that it is beneficial to leverage reward learning throughout the entire alignment process.
arXiv Detail & Related papers (2024-05-28T07:11:05Z) - Simplifying Model-based RL: Learning Representations, Latent-space
Models, and Policies with One Objective [142.36200080384145]
We propose a single objective which jointly optimize a latent-space model and policy to achieve high returns while remaining self-consistent.
We demonstrate that the resulting algorithm matches or improves the sample-efficiency of the best prior model-based and model-free RL methods.
arXiv Detail & Related papers (2022-09-18T03:51:58Z) - Reward Uncertainty for Exploration in Preference-based Reinforcement
Learning [88.34958680436552]
We present an exploration method specifically for preference-based reinforcement learning algorithms.
Our main idea is to design an intrinsic reward by measuring the novelty based on learned reward.
Our experiments show that exploration bonus from uncertainty in learned reward improves both feedback- and sample-efficiency of preference-based RL algorithms.
arXiv Detail & Related papers (2022-05-24T23:22:10Z) - ReIL: A Framework for Reinforced Intervention-based Imitation Learning [3.0846824529023387]
We introduce Reinforced Intervention-based Learning (ReIL), a framework consisting of a general intervention-based learning algorithm and a multi-task imitation learning model.
Experimental results from real world mobile robot navigation challenges indicate that ReIL learns rapidly from sparse supervisor corrections without suffering deterioration in performance.
arXiv Detail & Related papers (2022-03-29T09:30:26Z) - MHER: Model-based Hindsight Experience Replay [33.00149668905828]
We propose Model-based Hindsight Experience Replay (MHER) to solve multi-goal reinforcement learning problems.
replacing original goals with virtual goals generated from interaction with a trained dynamics model leads to a novel relabeling method.
MHER exploits experiences more efficiently by leveraging environmental dynamics to generate virtual achieved goals.
arXiv Detail & Related papers (2021-07-01T08:52:45Z) - Online reinforcement learning with sparse rewards through an active
inference capsule [62.997667081978825]
This paper introduces an active inference agent which minimizes the novel free energy of the expected future.
Our model is capable of solving sparse-reward problems with a very high sample efficiency.
We also introduce a novel method for approximating the prior model from the reward function, which simplifies the expression of complex objectives.
arXiv Detail & Related papers (2021-06-04T10:03:36Z) - Model-Based Visual Planning with Self-Supervised Functional Distances [104.83979811803466]
We present a self-supervised method for model-based visual goal reaching.
Our approach learns entirely using offline, unlabeled data.
We find that this approach substantially outperforms both model-free and model-based prior methods.
arXiv Detail & Related papers (2020-12-30T23:59:09Z) - Bridging Imagination and Reality for Model-Based Deep Reinforcement
Learning [72.18725551199842]
We propose a novel model-based reinforcement learning algorithm, called BrIdging Reality and Dream (BIRD)
It maximizes the mutual information between imaginary and real trajectories so that the policy improvement learned from imaginary trajectories can be easily generalized to real trajectories.
We demonstrate that our approach improves sample efficiency of model-based planning, and achieves state-of-the-art performance on challenging visual control benchmarks.
arXiv Detail & Related papers (2020-10-23T03:22:01Z) - REMAX: Relational Representation for Multi-Agent Exploration [13.363887960136102]
We propose a learning-based exploration strategy to generate the initial states of a game.
We demonstrate that our method improves the training and performance of the MARL model more than the existing exploration methods.
arXiv Detail & Related papers (2020-08-12T10:23:35Z) - Modeling Survival in model-based Reinforcement Learning [0.0]
This work presents the notion of survival by discussing cases in which the agent's goal is to survive.
A substitute model for the reward function approxor is introduced that learns to avoid terminal states.
Focusing on terminal states, as a small fraction of state-space, reduces the training effort drastically.
arXiv Detail & Related papers (2020-04-18T15:49:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.