Hard Example Generation by Texture Synthesis for Cross-domain Shape
Similarity Learning
- URL: http://arxiv.org/abs/2010.12238v2
- Date: Tue, 27 Oct 2020 02:12:58 GMT
- Title: Hard Example Generation by Texture Synthesis for Cross-domain Shape
Similarity Learning
- Authors: Huan Fu, Shunming Li, Rongfei Jia, Mingming Gong, Binqiang Zhao, and
Dacheng Tao
- Abstract summary: Image-based 3D shape retrieval (IBSR) aims to find the corresponding 3D shape of a given 2D image from a large 3D shape database.
metric learning with some adaptation techniques seems to be a natural solution to shape similarity learning.
We develop a geometry-focused multi-view metric learning framework empowered by texture synthesis.
- Score: 97.56893524594703
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image-based 3D shape retrieval (IBSR) aims to find the corresponding 3D shape
of a given 2D image from a large 3D shape database. The common routine is to
map 2D images and 3D shapes into an embedding space and define (or learn) a
shape similarity measure. While metric learning with some adaptation techniques
seems to be a natural solution to shape similarity learning, the performance is
often unsatisfactory for fine-grained shape retrieval. In the paper, we
identify the source of the poor performance and propose a practical solution to
this problem. We find that the shape difference between a negative pair is
entangled with the texture gap, making metric learning ineffective in pushing
away negative pairs. To tackle this issue, we develop a geometry-focused
multi-view metric learning framework empowered by texture synthesis. The
synthesis of textures for 3D shape models creates hard triplets, which suppress
the adverse effects of rich texture in 2D images, thereby push the network to
focus more on discovering geometric characteristics. Our approach shows
state-of-the-art performance on a recently released large-scale 3D-FUTURE[1]
repository, as well as three widely studied benchmarks, including Pix3D[2],
Stanford Cars[3], and Comp Cars[4]. Codes will be made publicly available at:
https://github.com/3D-FRONT-FUTURE/IBSR-texture
Related papers
- Geometry Image Diffusion: Fast and Data-Efficient Text-to-3D with Image-Based Surface Representation [2.3213238782019316]
GIMDiffusion is a novel Text-to-3D model that utilizes geometry images to efficiently represent 3D shapes using 2D images.
We exploit the rich 2D priors of existing Text-to-Image models such as Stable Diffusion.
In short, GIMDiffusion enables the generation of 3D assets at speeds comparable to current Text-to-Image models.
arXiv Detail & Related papers (2024-09-05T17:21:54Z) - 3D Surface Reconstruction in the Wild by Deforming Shape Priors from
Synthetic Data [24.97027425606138]
Reconstructing the underlying 3D surface of an object from a single image is a challenging problem.
We present a new method for joint category-specific 3D reconstruction and object pose estimation from a single image.
Our approach achieves state-of-the-art reconstruction performance across several real-world datasets.
arXiv Detail & Related papers (2023-02-24T20:37:27Z) - Self-Supervised Geometry-Aware Encoder for Style-Based 3D GAN Inversion [115.82306502822412]
StyleGAN has achieved great progress in 2D face reconstruction and semantic editing via image inversion and latent editing.
A corresponding generic 3D GAN inversion framework is still missing, limiting the applications of 3D face reconstruction and semantic editing.
We study the challenging problem of 3D GAN inversion where a latent code is predicted given a single face image to faithfully recover its 3D shapes and detailed textures.
arXiv Detail & Related papers (2022-12-14T18:49:50Z) - MvDeCor: Multi-view Dense Correspondence Learning for Fine-grained 3D
Segmentation [91.6658845016214]
We propose to utilize self-supervised techniques in the 2D domain for fine-grained 3D shape segmentation tasks.
We render a 3D shape from multiple views, and set up a dense correspondence learning task within the contrastive learning framework.
As a result, the learned 2D representations are view-invariant and geometrically consistent.
arXiv Detail & Related papers (2022-08-18T00:48:15Z) - Beyond 3DMM: Learning to Capture High-fidelity 3D Face Shape [77.95154911528365]
3D Morphable Model (3DMM) fitting has widely benefited face analysis due to its strong 3D priori.
Previous reconstructed 3D faces suffer from degraded visual verisimilitude due to the loss of fine-grained geometry.
This paper proposes a complete solution to capture the personalized shape so that the reconstructed shape looks identical to the corresponding person.
arXiv Detail & Related papers (2022-04-09T03:46:18Z) - Joint Deep Multi-Graph Matching and 3D Geometry Learning from
Inhomogeneous 2D Image Collections [57.60094385551773]
We propose a trainable framework for learning a deformable 3D geometry model from inhomogeneous image collections.
We in addition obtain the underlying 3D geometry of the objects depicted in the 2D images.
arXiv Detail & Related papers (2021-03-31T17:25:36Z) - Cycle-Consistent Generative Rendering for 2D-3D Modality Translation [21.962725416347855]
We learn a module that generates a realistic rendering of a 3D object and infers a realistic 3D shape from an image.
By leveraging generative domain translation methods, we are able to define a learning algorithm that requires only weak supervision, with unpaired data.
The resulting model is able to perform 3D shape, pose, and texture inference from 2D images, but can also generate novel textured 3D shapes and renders.
arXiv Detail & Related papers (2020-11-16T15:23:03Z) - Canonical 3D Deformer Maps: Unifying parametric and non-parametric
methods for dense weakly-supervised category reconstruction [79.98689027127855]
We propose a new representation of the 3D shape of common object categories that can be learned from a collection of 2D images of independent objects.
Our method builds in a novel way on concepts from parametric deformation models, non-parametric 3D reconstruction, and canonical embeddings.
It achieves state-of-the-art results in dense 3D reconstruction on public in-the-wild datasets of faces, cars, and birds.
arXiv Detail & Related papers (2020-08-28T15:44:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.