Cycle-Consistent Generative Rendering for 2D-3D Modality Translation
- URL: http://arxiv.org/abs/2011.08026v1
- Date: Mon, 16 Nov 2020 15:23:03 GMT
- Title: Cycle-Consistent Generative Rendering for 2D-3D Modality Translation
- Authors: Tristan Aumentado-Armstrong, Alex Levinshtein, Stavros Tsogkas,
Konstantinos G. Derpanis, and Allan D. Jepson
- Abstract summary: We learn a module that generates a realistic rendering of a 3D object and infers a realistic 3D shape from an image.
By leveraging generative domain translation methods, we are able to define a learning algorithm that requires only weak supervision, with unpaired data.
The resulting model is able to perform 3D shape, pose, and texture inference from 2D images, but can also generate novel textured 3D shapes and renders.
- Score: 21.962725416347855
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: For humans, visual understanding is inherently generative: given a 3D shape,
we can postulate how it would look in the world; given a 2D image, we can infer
the 3D structure that likely gave rise to it. We can thus translate between the
2D visual and 3D structural modalities of a given object. In the context of
computer vision, this corresponds to a learnable module that serves two
purposes: (i) generate a realistic rendering of a 3D object (shape-to-image
translation) and (ii) infer a realistic 3D shape from an image (image-to-shape
translation). In this paper, we learn such a module while being conscious of
the difficulties in obtaining large paired 2D-3D datasets. By leveraging
generative domain translation methods, we are able to define a learning
algorithm that requires only weak supervision, with unpaired data. The
resulting model is not only able to perform 3D shape, pose, and texture
inference from 2D images, but can also generate novel textured 3D shapes and
renders, similar to a graphics pipeline. More specifically, our method (i)
infers an explicit 3D mesh representation, (ii) utilizes example shapes to
regularize inference, (iii) requires only an image mask (no keypoints or camera
extrinsics), and (iv) has generative capabilities. While prior work explores
subsets of these properties, their combination is novel. We demonstrate the
utility of our learned representation, as well as its performance on image
generation and unpaired 3D shape inference tasks.
Related papers
- Geometry Image Diffusion: Fast and Data-Efficient Text-to-3D with Image-Based Surface Representation [2.3213238782019316]
GIMDiffusion is a novel Text-to-3D model that utilizes geometry images to efficiently represent 3D shapes using 2D images.
We exploit the rich 2D priors of existing Text-to-Image models such as Stable Diffusion.
In short, GIMDiffusion enables the generation of 3D assets at speeds comparable to current Text-to-Image models.
arXiv Detail & Related papers (2024-09-05T17:21:54Z) - XDGAN: Multi-Modal 3D Shape Generation in 2D Space [60.46777591995821]
We propose a novel method to convert 3D shapes into compact 1-channel geometry images and leverage StyleGAN3 and image-to-image translation networks to generate 3D objects in 2D space.
The generated geometry images are quick to convert to 3D meshes, enabling real-time 3D object synthesis, visualization and interactive editing.
We show both quantitatively and qualitatively that our method is highly effective at various tasks such as 3D shape generation, single view reconstruction and shape manipulation, while being significantly faster and more flexible compared to recent 3D generative models.
arXiv Detail & Related papers (2022-10-06T15:54:01Z) - MvDeCor: Multi-view Dense Correspondence Learning for Fine-grained 3D
Segmentation [91.6658845016214]
We propose to utilize self-supervised techniques in the 2D domain for fine-grained 3D shape segmentation tasks.
We render a 3D shape from multiple views, and set up a dense correspondence learning task within the contrastive learning framework.
As a result, the learned 2D representations are view-invariant and geometrically consistent.
arXiv Detail & Related papers (2022-08-18T00:48:15Z) - Disentangled3D: Learning a 3D Generative Model with Disentangled
Geometry and Appearance from Monocular Images [94.49117671450531]
State-of-the-art 3D generative models are GANs which use neural 3D volumetric representations for synthesis.
In this paper, we design a 3D GAN which can learn a disentangled model of objects, just from monocular observations.
arXiv Detail & Related papers (2022-03-29T22:03:18Z) - Fully Understanding Generic Objects: Modeling, Segmentation, and
Reconstruction [33.95791350070165]
Inferring 3D structure of a generic object from a 2D image is a long-standing objective of computer vision.
We take an alternative approach with semi-supervised learning. That is, for a 2D image of a generic object, we decompose it into latent representations of category, shape and albedo.
We show that the complete shape and albedo modeling enables us to leverage real 2D images in both modeling and model fitting.
arXiv Detail & Related papers (2021-04-02T02:39:29Z) - Do 2D GANs Know 3D Shape? Unsupervised 3D shape reconstruction from 2D
Image GANs [156.1209884183522]
State-of-the-art 2D generative models like GANs show unprecedented quality in modeling the natural image manifold.
We present the first attempt to directly mine 3D geometric cues from an off-the-shelf 2D GAN that is trained on RGB images only.
arXiv Detail & Related papers (2020-11-02T09:38:43Z) - Hard Example Generation by Texture Synthesis for Cross-domain Shape
Similarity Learning [97.56893524594703]
Image-based 3D shape retrieval (IBSR) aims to find the corresponding 3D shape of a given 2D image from a large 3D shape database.
metric learning with some adaptation techniques seems to be a natural solution to shape similarity learning.
We develop a geometry-focused multi-view metric learning framework empowered by texture synthesis.
arXiv Detail & Related papers (2020-10-23T08:52:00Z) - Convolutional Generation of Textured 3D Meshes [34.20939983046376]
We propose a framework that can generate triangle meshes and associated high-resolution texture maps, using only 2D supervision from single-view natural images.
A key contribution of our work is the encoding of the mesh and texture as 2D representations, which are semantically aligned and can be easily modeled by a 2D convolutional GAN.
We demonstrate the efficacy of our method on Pascal3D+ Cars and CUB, both in an unconditional setting and in settings where the model is conditioned on class labels, attributes, and text.
arXiv Detail & Related papers (2020-06-13T15:23:29Z) - Self-Supervised 2D Image to 3D Shape Translation with Disentangled
Representations [92.89846887298852]
We present a framework to translate between 2D image views and 3D object shapes.
We propose SIST, a Self-supervised Image to Shape Translation framework.
arXiv Detail & Related papers (2020-03-22T22:44:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.