Multi Scale Identity-Preserving Image-to-Image Translation Network for
Low-Resolution Face Recognition
- URL: http://arxiv.org/abs/2010.12249v4
- Date: Sun, 3 Jul 2022 19:25:15 GMT
- Title: Multi Scale Identity-Preserving Image-to-Image Translation Network for
Low-Resolution Face Recognition
- Authors: Vahid Reza Khazaie and Nicky Bayat and Yalda Mohsenzadeh
- Abstract summary: We propose an identity-preserving end-to-end image-to-image translation deep neural network.
It is capable of super-resolving very low-resolution faces to their high-resolution counterparts while preserving identity-related information.
- Score: 7.6702700993064115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State-of-the-art deep neural network models have reached near perfect face
recognition accuracy rates on controlled high-resolution face images. However,
their performance is drastically degraded when they are tested with very
low-resolution face images. This is particularly critical in surveillance
systems, where a low-resolution probe image is to be matched with
high-resolution gallery images. super-resolution techniques aim at producing
high-resolution face images from low-resolution counterparts. While they are
capable of reconstructing images that are visually appealing, the
identity-related information is not preserved. Here, we propose an
identity-preserving end-to-end image-to-image translation deep neural network
which is capable of super-resolving very low-resolution faces to their
high-resolution counterparts while preserving identity-related information. We
achieved this by training a very deep convolutional encoder-decoder network
with a symmetric contracting path between corresponding layers. This network
was trained with a combination of a reconstruction and an identity-preserving
loss, on multi-scale low-resolution conditions. Extensive quantitative
evaluations of our proposed model demonstrated that it outperforms competing
super-resolution and low-resolution face recognition methods on natural and
artificial low-resolution face data sets and even unseen identities.
Related papers
- Research on Image Super-Resolution Reconstruction Mechanism based on Convolutional Neural Network [8.739451985459638]
Super-resolution algorithms transform one or more sets of low-resolution images captured from the same scene into high-resolution images.
The extraction of image features and nonlinear mapping methods in the reconstruction process remain challenging for existing algorithms.
The objective is to recover high-quality, high-resolution images from low-resolution images.
arXiv Detail & Related papers (2024-07-18T06:50:39Z) - Reconstructing Interpretable Features in Computational Super-Resolution microscopy via Regularized Latent Search [2.7194314957925094]
Supervised deep learning approaches can artificially increase the resolution of microscopy images by learning a mapping between two image resolutions or modalities.
Recent methods based on GAN latent search offered a drastic increase in resolution without the need of paired images.
Here, we propose a robust super-resolution method based on regularized latent search(RLS) that offers an actionable balance between fidelity to the ground-truth and realism of the recovered image.
arXiv Detail & Related papers (2024-05-29T14:20:46Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
Deepfake detection refers to detecting artificially generated or edited faces in images or videos.
We propose a novel Deepfake detection framework named DeepFidelity to adaptively distinguish real and fake faces.
arXiv Detail & Related papers (2023-12-07T07:19:45Z) - Super-Resolving Face Image by Facial Parsing Information [52.1267613768555]
Face super-resolution is a technology that transforms a low-resolution face image into the corresponding high-resolution one.
We build a novel parsing map guided face super-resolution network which extracts the face prior from low-resolution face image.
High-resolution features contain more precise spatial information while low-resolution features provide strong contextual information.
arXiv Detail & Related papers (2023-04-06T08:19:03Z) - Cross-resolution Face Recognition via Identity-Preserving Network and
Knowledge Distillation [12.090322373964124]
Cross-resolution face recognition is a challenging problem for modern deep face recognition systems.
This paper proposes a new approach that enforces the network to focus on the discriminative information stored in the low-frequency components of a low-resolution image.
arXiv Detail & Related papers (2023-03-15T14:52:46Z) - Semantic Encoder Guided Generative Adversarial Face Ultra-Resolution
Network [15.102899995465041]
We propose a novel face super-resolution method, namely Semantic guided Generative Adversarial Face Ultra-Resolution Network (SEGA-FURN)
The proposed network is composed of a novel semantic encoder that has the ability to capture the embedded semantics to guide adversarial learning and a novel generator that uses a hierarchical architecture named Residual in Internal Block (RIDB)
Experiments on large face datasets have proved that the proposed method can achieve superior super-resolution results and significantly outperform other state-of-the-art methods in both qualitative and quantitative comparisons.
arXiv Detail & Related papers (2022-11-18T23:16:57Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Analysis and evaluation of Deep Learning based Super-Resolution
algorithms to improve performance in Low-Resolution Face Recognition [0.0]
Super-resolution algorithms may be able to recover the discriminant properties of the subjects involved.
This project aimed at evaluating and adapting different deep neural network architectures for the task of face super-resolution.
Experiments showed that general super-resolution architectures might enhance face verification performance of deep neural networks trained on high-resolution faces.
arXiv Detail & Related papers (2021-01-19T02:41:57Z) - Invertible Image Rescaling [118.2653765756915]
We develop an Invertible Rescaling Net (IRN) to produce visually-pleasing low-resolution images.
We capture the distribution of the lost information using a latent variable following a specified distribution in the downscaling process.
arXiv Detail & Related papers (2020-05-12T09:55:53Z) - Unsupervised Real Image Super-Resolution via Generative Variational
AutoEncoder [47.53609520395504]
We revisit the classic example based image super-resolution approaches and come up with a novel generative model for perceptual image super-resolution.
We propose a joint image denoising and super-resolution model via Variational AutoEncoder.
With the aid of the discriminator, an additional overhead of super-resolution subnetwork is attached to super-resolve the denoised image with photo-realistic visual quality.
arXiv Detail & Related papers (2020-04-27T13:49:36Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.