A Survey on Recent Approaches for Natural Language Processing in
Low-Resource Scenarios
- URL: http://arxiv.org/abs/2010.12309v3
- Date: Fri, 9 Apr 2021 13:48:02 GMT
- Title: A Survey on Recent Approaches for Natural Language Processing in
Low-Resource Scenarios
- Authors: Michael A. Hedderich, Lukas Lange, Heike Adel, Jannik Str\"otgen,
Dietrich Klakow
- Abstract summary: Deep neural networks and huge language models are becoming omnipresent in natural language applications.
As they are known for requiring large amounts of training data, there is a growing body of work to improve the performance in low-resource settings.
Motivated by the recent fundamental changes towards neural models and the popular pre-train and fine-tune paradigm, we survey promising approaches for low-resource natural language processing.
- Score: 30.391291221959545
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks and huge language models are becoming omnipresent in
natural language applications. As they are known for requiring large amounts of
training data, there is a growing body of work to improve the performance in
low-resource settings. Motivated by the recent fundamental changes towards
neural models and the popular pre-train and fine-tune paradigm, we survey
promising approaches for low-resource natural language processing. After a
discussion about the different dimensions of data availability, we give a
structured overview of methods that enable learning when training data is
sparse. This includes mechanisms to create additional labeled data like data
augmentation and distant supervision as well as transfer learning settings that
reduce the need for target supervision. A goal of our survey is to explain how
these methods differ in their requirements as understanding them is essential
for choosing a technique suited for a specific low-resource setting. Further
key aspects of this work are to highlight open issues and to outline promising
directions for future research.
Related papers
- Unsupervised Data Validation Methods for Efficient Model Training [0.0]
State-of-the-art models in natural language processing (NLP), text-to-speech (TTS), speech-to-text (STT) and vision-language models (VLM) rely heavily on large datasets.
This research explores key areas such as defining "quality data," developing methods for generating appropriate data and enhancing accessibility to model training.
arXiv Detail & Related papers (2024-10-10T13:00:53Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
We propose a framework to enable in-context learning in large language models.
A meta-model can learn on self-supervised prompts consisting of tailored demonstrations.
Experiments show that SINC outperforms gradient-based methods in various vision-language tasks.
arXiv Detail & Related papers (2023-07-15T08:33:08Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
We present a novel framework that harnesses the rich contextual information and semantic representations provided by large language models to analyze behavior graphs.
By leveraging this capability, our framework enables personalized and accurate job recommendations for individual users.
arXiv Detail & Related papers (2023-07-10T11:29:41Z) - A Survey of Large Language Models [81.06947636926638]
Language modeling has been widely studied for language understanding and generation in the past two decades.
Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora.
To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size.
arXiv Detail & Related papers (2023-03-31T17:28:46Z) - Mitigating Data Scarcity for Large Language Models [7.259279261659759]
In recent years, pretrained neural language models (PNLMs) have taken the field of natural language processing by storm.
Data scarcity are commonly found in specialized domains, such as medical, or in low-resource languages that are underexplored by AI research.
In this dissertation, we focus on mitigating data scarcity using data augmentation and neural ensemble learning techniques.
arXiv Detail & Related papers (2023-02-03T15:17:53Z) - Leveraging pre-trained language models for conversational information
seeking from text [2.8425118603312]
In this paper we investigate the usage of in-context learning and pre-trained language representation models to address the problem of information extraction from process description documents.
The results highlight the potential of the approach and the usefulness of the in-context learning customizations.
arXiv Detail & Related papers (2022-03-31T09:00:46Z) - Federated Learning Meets Natural Language Processing: A Survey [12.224792145700562]
Federated Learning aims to learn machine learning models from multiple decentralized edge devices (e.g. mobiles) or servers without sacrificing local data privacy.
Recent Natural Language Processing techniques rely on deep learning and large pre-trained language models.
arXiv Detail & Related papers (2021-07-27T05:07:48Z) - Reprogramming Language Models for Molecular Representation Learning [65.00999660425731]
We propose Representation Reprogramming via Dictionary Learning (R2DL) for adversarially reprogramming pretrained language models for molecular learning tasks.
The adversarial program learns a linear transformation between a dense source model input space (language data) and a sparse target model input space (e.g., chemical and biological molecule data) using a k-SVD solver.
R2DL achieves the baseline established by state of the art toxicity prediction models trained on domain-specific data and outperforms the baseline in a limited training-data setting.
arXiv Detail & Related papers (2020-12-07T05:50:27Z) - Low-Resource Adaptation of Neural NLP Models [0.30458514384586405]
This thesis investigates methods for dealing with low-resource scenarios in information extraction and natural language understanding.
We develop and adapt neural NLP models to explore a number of research questions concerning NLP tasks with minimal or no training data.
arXiv Detail & Related papers (2020-11-09T12:13:55Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - Pre-training Text Representations as Meta Learning [113.3361289756749]
We introduce a learning algorithm which directly optimize model's ability to learn text representations for effective learning of downstream tasks.
We show that there is an intrinsic connection between multi-task pre-training and model-agnostic meta-learning with a sequence of meta-train steps.
arXiv Detail & Related papers (2020-04-12T09:05:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.