Low-Resource Adaptation of Neural NLP Models
- URL: http://arxiv.org/abs/2011.04372v1
- Date: Mon, 9 Nov 2020 12:13:55 GMT
- Title: Low-Resource Adaptation of Neural NLP Models
- Authors: Farhad Nooralahzadeh
- Abstract summary: This thesis investigates methods for dealing with low-resource scenarios in information extraction and natural language understanding.
We develop and adapt neural NLP models to explore a number of research questions concerning NLP tasks with minimal or no training data.
- Score: 0.30458514384586405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world applications of natural language processing (NLP) are challenging.
NLP models rely heavily on supervised machine learning and require large
amounts of annotated data. These resources are often based on language data
available in large quantities, such as English newswire. However, in real-world
applications of NLP, the textual resources vary across several dimensions, such
as language, dialect, topic, and genre. It is challenging to find annotated
data of sufficient amount and quality. The objective of this thesis is to
investigate methods for dealing with such low-resource scenarios in information
extraction and natural language understanding. To this end, we study distant
supervision and sequential transfer learning in various low-resource settings.
We develop and adapt neural NLP models to explore a number of research
questions concerning NLP tasks with minimal or no training data.
Related papers
- Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
State-of-the-art natural language processing (NLP) models are trained on massive training corpora, and report a superlative performance on evaluation datasets.
This survey delves into an important attribute of these datasets: the dialect of a language.
Motivated by the performance degradation of NLP models for dialectic datasets and its implications for the equity of language technologies, we survey past research in NLP for dialects in terms of datasets, and approaches.
arXiv Detail & Related papers (2024-01-11T03:04:38Z) - Surveying the Landscape of Text Summarization with Deep Learning: A
Comprehensive Review [2.4185510826808487]
Deep learning has revolutionized natural language processing (NLP) by enabling the development of models that can learn complex representations of language data.
Deep learning models for NLP typically use large amounts of data to train deep neural networks, allowing them to learn the patterns and relationships in language data.
Applying deep learning to text summarization refers to the use of deep neural networks to perform text summarization tasks.
arXiv Detail & Related papers (2023-10-13T21:24:37Z) - A Survey of Methods for Addressing Class Imbalance in Deep-Learning
Based Natural Language Processing [68.37496795076203]
We provide guidance for NLP researchers and practitioners dealing with imbalanced data.
We first discuss various types of controlled and real-world class imbalance.
We organize the methods by whether they are based on sampling, data augmentation, choice of loss function, staged learning, or model design.
arXiv Detail & Related papers (2022-10-10T13:26:40Z) - Meta Learning for Natural Language Processing: A Survey [88.58260839196019]
Deep learning has been the mainstream technique in natural language processing (NLP) area.
Deep learning requires many labeled data and is less generalizable across domains.
Meta-learning is an arising field in machine learning studying approaches to learn better algorithms.
arXiv Detail & Related papers (2022-05-03T13:58:38Z) - AdaPrompt: Adaptive Model Training for Prompt-based NLP [77.12071707955889]
We propose AdaPrompt, adaptively retrieving external data for continual pretraining of PLMs.
Experimental results on five NLP benchmarks show that AdaPrompt can improve over standard PLMs in few-shot settings.
In zero-shot settings, our method outperforms standard prompt-based methods by up to 26.35% relative error reduction.
arXiv Detail & Related papers (2022-02-10T04:04:57Z) - FedNLP: A Research Platform for Federated Learning in Natural Language
Processing [55.01246123092445]
We present the FedNLP, a research platform for federated learning in NLP.
FedNLP supports various popular task formulations in NLP such as text classification, sequence tagging, question answering, seq2seq generation, and language modeling.
Preliminary experiments with FedNLP reveal that there exists a large performance gap between learning on decentralized and centralized datasets.
arXiv Detail & Related papers (2021-04-18T11:04:49Z) - A Little Pretraining Goes a Long Way: A Case Study on Dependency Parsing
Task for Low-resource Morphologically Rich Languages [14.694800341598368]
We focus on dependency parsing for morphological rich languages (MRLs) in a low-resource setting.
To address these challenges, we propose simple auxiliary tasks for pretraining.
We perform experiments on 10 MRLs in low-resource settings to measure the efficacy of our proposed pretraining method.
arXiv Detail & Related papers (2021-02-12T14:26:58Z) - A Survey on Recent Approaches for Natural Language Processing in
Low-Resource Scenarios [30.391291221959545]
Deep neural networks and huge language models are becoming omnipresent in natural language applications.
As they are known for requiring large amounts of training data, there is a growing body of work to improve the performance in low-resource settings.
Motivated by the recent fundamental changes towards neural models and the popular pre-train and fine-tune paradigm, we survey promising approaches for low-resource natural language processing.
arXiv Detail & Related papers (2020-10-23T11:22:01Z) - Natural Language Processing Advancements By Deep Learning: A Survey [0.755972004983746]
This survey categorizes and addresses the different aspects and applications of NLP that have benefited from deep learning.
It covers core NLP tasks and applications and describes how deep learning methods and models advance these areas.
arXiv Detail & Related papers (2020-03-02T21:32:05Z) - Cross-lingual, Character-Level Neural Morphological Tagging [57.0020906265213]
We train character-level recurrent neural taggers to predict morphological taggings for high-resource languages and low-resource languages together.
Learning joint character representations among multiple related languages successfully enables knowledge transfer from the high-resource languages to the low-resource ones, improving accuracy by up to 30% over a monolingual model.
arXiv Detail & Related papers (2017-08-30T08:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.