論文の概要: RSKDD-Net: Random Sample-based Keypoint Detector and Descriptor
- arxiv url: http://arxiv.org/abs/2010.12394v1
- Date: Fri, 23 Oct 2020 13:29:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 23:19:30.291497
- Title: RSKDD-Net: Random Sample-based Keypoint Detector and Descriptor
- Title(参考訳): rskdd-net:ランダムサンプルベースキーポイント検出器およびディスクリプタ
- Authors: Fan Lu and Guang Chen and Yinlong Liu and Zhongnan Qu and Alois Knoll
- Abstract要約: 本稿では,大規模クラウド登録のためのランダムサンプルベースキーポイント検出器とディスクリプタネットワーク(RSKDD-Net)を提案する。
鍵となるアイデアは、ランダムサンプリングを使用して候補点を効率よく選択し、学習に基づく手法を使ってキーポイントと記述子を共同で生成することである。
2つの大規模屋外LiDARデータセットの実験により、提案したRSKDD-Netは、既存の手法の15倍以上の高速で最先端のパフォーマンスを達成することが示された。
- 参考スコア(独自算出の注目度): 11.393546826269372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Keypoint detector and descriptor are two main components of point cloud
registration. Previous learning-based keypoint detectors rely on saliency
estimation for each point or farthest point sample (FPS) for candidate points
selection, which are inefficient and not applicable in large scale scenes. This
paper proposes Random Sample-based Keypoint Detector and Descriptor Network
(RSKDD-Net) for large scale point cloud registration. The key idea is using
random sampling to efficiently select candidate points and using a
learning-based method to jointly generate keypoints and descriptors. To tackle
the information loss of random sampling, we exploit a novel random dilation
cluster strategy to enlarge the receptive field of each sampled point and an
attention mechanism to aggregate the positions and features of neighbor points.
Furthermore, we propose a matching loss to train the descriptor in a weakly
supervised manner. Extensive experiments on two large scale outdoor LiDAR
datasets show that the proposed RSKDD-Net achieves state-of-the-art performance
with more than 15 times faster than existing methods. Our code is available at
https://github.com/ispc-lab/RSKDD-Net.
- Abstract(参考訳): keypoint detectorとdescriptorは、ポイントクラウド登録の主要な2つのコンポーネントである。
従来の学習に基づくキーポイント検出装置は、大規模シーンでは非効率で適用できない候補点選択のために、各点または最遠点サンプル(FPS)の正当性推定に頼っていた。
本稿では,大規模クラウド登録のためのランダムサンプルベースキーポイント検出器とディスクリプタネットワーク(RSKDD-Net)を提案する。
鍵となるアイデアは、ランダムサンプリングを使って候補点を効率的に選択し、学習ベースの方法を使ってキーポイントと記述子を共同で生成する。
ランダムサンプリングの情報損失に対処するために,各サンプル点の受容場を拡大するための新しいランダム拡張クラスタ戦略と,隣接点の位置と特徴を集約するアテンション機構を利用する。
さらに,弱い教師の方法で記述子を訓練するためのマッチング損失を提案する。
2つの大規模屋外LiDARデータセットの大規模な実験により、提案したRSKDD-Netは、既存の手法の15倍以上の高速で最先端のパフォーマンスを達成することが示された。
私たちのコードはhttps://github.com/ispc-lab/rskdd-netで利用可能です。
関連論文リスト
- DeDoDe: Detect, Don't Describe -- Describe, Don't Detect for Local
Feature Matching [14.837075102089]
キーポイント検出は3次元再構成において重要なステップであり、シーンの各ビューで最大K点のセットを検出する。
従来の学習に基づく手法は、通常、キーポイントを持つ記述子を学習し、キーポイント検出を隣り合う隣人の二項分類タスクとして扱う。
本研究は, キーポイントを3次元整合性から直接学習し, この目的を達成するための半教師付き2視点検出目標を導出する。
その結果,複数の幾何ベンチマークにおいて,DeDoDeという手法が大幅に向上していることが判明した。
論文 参考訳(メタデータ) (2023-08-16T16:37:02Z) - Attention-based Point Cloud Edge Sampling [0.0]
ポイントクラウドサンプリングは、このデータ表現に関して、あまり調査されていない研究トピックである。
本稿では,非生成的注意に基づくポイントクラウドエッジサンプリング法(APES)を提案する。
定性的および定量的な実験結果から, 一般的なベンチマークタスクにおいて, サンプリング手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-02-28T15:36:17Z) - AU-PD: An Arbitrary-size and Uniform Downsampling Framework for Point
Clouds [6.786701761788659]
我々はAU-PDという新しいタスク対応サンプリングフレームワークを導入し、ポイントクラウドを直接小さなサイズにダウンサンプルする。
私たちは、ダウンストリームタスクの損失によって引き起こされるタスク認識を実現するために、プリサンプルセットを洗練します。
注意機構と適切なトレーニングスキームにより、フレームワークは異なるサイズのプリサンプルセットを適応的に洗練することを学ぶ。
論文 参考訳(メタデータ) (2022-11-02T13:37:16Z) - Centroid Distance Keypoint Detector for Colored Point Clouds [32.74803728070627]
キーポイント検出は多くのコンピュータビジョンとロボティクスアプリケーションの基礎となる。
そこで本研究では,色点雲中の幾何塩分と色塩分の両方のキーポイントを抽出できる効率的なマルチモーダルキーポイント検出器を提案する。
論文 参考訳(メタデータ) (2022-10-04T00:55:51Z) - Point-to-Box Network for Accurate Object Detection via Single Point
Supervision [51.95993495703855]
オフ・ザ・シェルフ提案法(OTSP)の軽量な代替手法を提案する。
P2BNetは、アンカーのような方法で提案を生成することで、オブジェクト間のバランスの取れた提案バッグを構築することができる。
コードはCOCO.com/ucas-vg/P2BNetでリリースされる。
論文 参考訳(メタデータ) (2022-07-14T11:32:00Z) - Stratified Transformer for 3D Point Cloud Segmentation [89.9698499437732]
Stratified Transformerは、長距離コンテキストをキャプチャし、強力な一般化能力と高性能を示す。
不規則な点配置によって引き起こされる課題に対処するために,局所情報を集約する第1層点埋め込みを提案する。
S3DIS, ScanNetv2およびShapeNetPartデータセットにおける本手法の有効性と優位性を示す実験を行った。
論文 参考訳(メタデータ) (2022-03-28T05:35:16Z) - Beyond Farthest Point Sampling in Point-Wise Analysis [52.218037492342546]
本稿では,ポイントワイズ分析タスクのための新しいデータ駆動型サンプル学習手法を提案する。
我々はサンプルと下流のアプリケーションを共同で学習する。
実験により, 従来のベースライン法に比べて, サンプルとタスクの同時学習が顕著に改善することが示された。
論文 参考訳(メタデータ) (2021-07-09T08:08:44Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
我々はRandLA-Netを紹介した。RandLA-Netは、大規模ポイントクラウドのポイントごとの意味を推論する、効率的で軽量なニューラルネットワークアーキテクチャである。
我々のアプローチの鍵は、より複雑な点選択アプローチではなく、ランダムな点サンプリングを使用することである。
我々のRandLA-Netは、既存のアプローチよりも最大200倍高速な1回のパスで100万ポイントを処理できます。
論文 参考訳(メタデータ) (2021-07-06T05:08:34Z) - A Self-Training Approach for Point-Supervised Object Detection and
Counting in Crowds [54.73161039445703]
本稿では,ポイントレベルのアノテーションのみを用いて訓練された典型的なオブジェクト検出を可能にする,新たな自己学習手法を提案する。
トレーニング中、利用可能なポイントアノテーションを使用して、オブジェクトの中心点の推定を監督する。
実験の結果,本手法は検出タスクとカウントタスクの両方において,最先端のポイント管理手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2020-07-25T02:14:42Z) - Key Points Estimation and Point Instance Segmentation Approach for Lane
Detection [65.37887088194022]
本稿では,PINet (Point Instance Network) と呼ばれるトラヒックライン検出手法を提案する。
PINetには、同時にトレーニングされる複数のスタックされた時間ガラスネットワークが含まれている。
PINetはTuSimpleとCulaneのデータセットで競合精度と偽陽性を達成する。
論文 参考訳(メタデータ) (2020-02-16T15:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。