論文の概要: Towards Safe Policy Improvement for Non-Stationary MDPs
- arxiv url: http://arxiv.org/abs/2010.12645v2
- Date: Thu, 17 Dec 2020 20:26:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 21:39:59.439471
- Title: Towards Safe Policy Improvement for Non-Stationary MDPs
- Title(参考訳): 非定常MDPの安全政策改善に向けて
- Authors: Yash Chandak, Scott M. Jordan, Georgios Theocharous, Martha White,
Philip S. Thomas
- Abstract要約: 多くの実世界の利害問題は非定常性を示し、利害関係が高ければ、偽の定常性仮定に関連するコストは受け入れがたい。
我々は、スムーズに変化する非定常的な意思決定問題に対して、高い信頼性で安全性を確保するための第一歩を踏み出します。
提案手法は,時系列解析を用いたモデルフリー強化学習の合成により,セルドンアルゴリズムと呼ばれる安全なアルゴリズムを拡張した。
- 参考スコア(独自算出の注目度): 48.9966576179679
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many real-world sequential decision-making problems involve critical systems
with financial risks and human-life risks. While several works in the past have
proposed methods that are safe for deployment, they assume that the underlying
problem is stationary. However, many real-world problems of interest exhibit
non-stationarity, and when stakes are high, the cost associated with a false
stationarity assumption may be unacceptable. We take the first steps towards
ensuring safety, with high confidence, for smoothly-varying non-stationary
decision problems. Our proposed method extends a type of safe algorithm, called
a Seldonian algorithm, through a synthesis of model-free reinforcement learning
with time-series analysis. Safety is ensured using sequential hypothesis
testing of a policy's forecasted performance, and confidence intervals are
obtained using wild bootstrap.
- Abstract(参考訳): 現実世界のシーケンシャルな意思決定には、金融リスクと人命リスクを伴う重要なシステムが含まれる。
過去にいくつかの研究がデプロイに安全な方法を提案しているが、根底にある問題は静止していると仮定している。
しかし、多くの実世界の利害問題は非定常性を示し、利害関係が高ければ、偽の定常性仮定に関連するコストは受け入れがたい。
我々は、スムーズに変化する非定常的な意思決定問題に対して、安全を確実にする第一歩を踏み出します。
提案手法は,時系列解析を用いたモデルフリー強化学習の合成により,セルドンアルゴリズムと呼ばれる安全なアルゴリズムを拡張した。
ポリシーの予測性能の逐次仮説テストを用いて安全性を保証し、ワイルドブートストラップを用いて信頼区間を求める。
関連論文リスト
- Safe Reinforcement Learning for Constrained Markov Decision Processes with Stochastic Stopping Time [0.6554326244334868]
安全制約付きマルコフ決定過程に対するオンライン強化学習アルゴリズムを提案する。
学習方針は高い信頼を持って安全であることを示す。
また、プロキシセットと呼ばれる状態空間のサブセットを定義することで、効率的な探索を実現することができることを示す。
論文 参考訳(メタデータ) (2024-03-23T20:22:30Z) - Information-Theoretic Safe Bayesian Optimization [59.758009422067005]
そこでは、未知の(安全でない)制約に反するパラメータを評価することなく、未知の関数を最適化することを目的としている。
現在のほとんどのメソッドはドメインの離散化に依存しており、連続ケースに直接拡張することはできない。
本稿では,GP後部を直接利用して,最も情報に富む安全なパラメータを識別する情報理論的安全な探索基準を提案する。
論文 参考訳(メタデータ) (2024-02-23T14:31:10Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
そこで本研究では,観測データのアクティブデノイズ化による新しい推定手法を提案する。
幅広い実験を行うことで,提案手法が標準手法よりも実際のデータ不確実性にはるかに近い近似を与えることを示す。
論文 参考訳(メタデータ) (2023-12-16T14:59:11Z) - Information-Theoretic Safe Exploration with Gaussian Processes [89.31922008981735]
未知の(安全でない)制約に反するパラメータを評価できないような、逐次的な意思決定タスクについて検討する。
現在のほとんどのメソッドはドメインの離散化に依存しており、連続ケースに直接拡張することはできない。
本稿では,GP後部を直接利用して,最も情報に富む安全なパラメータを識別する情報理論的安全な探索基準を提案する。
論文 参考訳(メタデータ) (2022-12-09T15:23:58Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
CBFをベースとした安全クリティカルコントローラのモデル不確実性を考慮した再構成を提案する。
次に、結果の安全制御器のポイントワイズ実現可能性条件を示す。
これらの条件を利用して、イベントトリガーによるオンラインデータ収集戦略を考案する。
論文 参考訳(メタデータ) (2022-08-23T05:02:09Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
本稿では,学習時の安全性維持が不可欠である高次元非線形最適化問題に対する一般的なアプローチを提案する。
LBSGDと呼ばれるアプローチは、慎重に選択されたステップサイズで対数障壁近似を適用することに基づいている。
安全強化学習における政策課題の違反を最小限に抑えるためのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-07-21T11:14:47Z) - Context-Aware Safe Reinforcement Learning for Non-Stationary
Environments [24.75527261989899]
現実的なタスクのために強化学習エージェントを展開する場合、安全は重要な問題である。
非定常環境における安全な適応を実現するために,文脈認識型安全強化学習法(CASRL)を提案する。
提案アルゴリズムは,安全性とロバスト性の観点から,既存のベースラインを著しく上回ることを示す。
論文 参考訳(メタデータ) (2021-01-02T23:52:22Z) - Efficient falsification approach for autonomous vehicle validation using
a parameter optimisation technique based on reinforcement learning [6.198523595657983]
自律走行車(AV)の大規模展開は、まだ解決されていない多くの安全上の課題にもかかわらず、差し迫っているように見える。
交通参加者とダイナミックワールドの行動の不確実性は、先進的な自律システムにおいて反応を引き起こす。
本稿では,システム・アンダー・テストを評価するための効率的なファルシフィケーション手法を提案する。
論文 参考訳(メタデータ) (2020-11-16T02:56:13Z) - Verifiably Safe Exploration for End-to-End Reinforcement Learning [17.401496872603943]
本稿では,視覚的入力によるエンドツーエンドポリシーの形式的安全性制約の実施に向けた最初のアプローチを提案する。
厳密な制約の存在下で安全に探索することの難しさを強調する新しいベンチマークで評価されている。
論文 参考訳(メタデータ) (2020-07-02T16:12:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。