Dynamic Contextualized Word Embeddings
- URL: http://arxiv.org/abs/2010.12684v3
- Date: Tue, 8 Jun 2021 13:08:12 GMT
- Title: Dynamic Contextualized Word Embeddings
- Authors: Valentin Hofmann, Janet B. Pierrehumbert, Hinrich Sch\"utze
- Abstract summary: We introduce dynamic contextualized word embeddings that represent words as a function of both linguistic and extralinguistic context.
Based on a pretrained language model (PLM), dynamic contextualized word embeddings model time and social space jointly.
We highlight potential application scenarios by means of qualitative and quantitative analyses on four English datasets.
- Score: 20.81930455526026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Static word embeddings that represent words by a single vector cannot capture
the variability of word meaning in different linguistic and extralinguistic
contexts. Building on prior work on contextualized and dynamic word embeddings,
we introduce dynamic contextualized word embeddings that represent words as a
function of both linguistic and extralinguistic context. Based on a pretrained
language model (PLM), dynamic contextualized word embeddings model time and
social space jointly, which makes them attractive for a range of NLP tasks
involving semantic variability. We highlight potential application scenarios by
means of qualitative and quantitative analyses on four English datasets.
Related papers
- How well do distributed representations convey contextual lexical semantics: a Thesis Proposal [3.3585951129432323]
In this thesis, we examine the efficacy of distributed representations from modern neural networks in encoding lexical meaning.
We identify four sources of ambiguity based on the relatedness and similarity of meanings influenced by context.
We then aim to evaluate these sources by collecting or constructing multilingual datasets, leveraging various language models, and employing linguistic analysis tools.
arXiv Detail & Related papers (2024-06-02T14:08:51Z) - Syntax and Semantics Meet in the "Middle": Probing the Syntax-Semantics
Interface of LMs Through Agentivity [68.8204255655161]
We present the semantic notion of agentivity as a case study for probing such interactions.
This suggests LMs may potentially serve as more useful tools for linguistic annotation, theory testing, and discovery.
arXiv Detail & Related papers (2023-05-29T16:24:01Z) - A Comprehensive Empirical Evaluation of Existing Word Embedding
Approaches [5.065947993017158]
We present the characteristics of existing word embedding approaches and analyze them with regard to many classification tasks.
Traditional approaches mostly use matrix factorization to produce word representations, and they are not able to capture the semantic and syntactic regularities of the language very well.
On the other hand, Neural-network-based approaches can capture sophisticated regularities of the language and preserve the word relationships in the generated word representations.
arXiv Detail & Related papers (2023-03-13T15:34:19Z) - An Inclusive Notion of Text [69.36678873492373]
We argue that clarity on the notion of text is crucial for reproducible and generalizable NLP.
We introduce a two-tier taxonomy of linguistic and non-linguistic elements that are available in textual sources and can be used in NLP modeling.
arXiv Detail & Related papers (2022-11-10T14:26:43Z) - Did the Cat Drink the Coffee? Challenging Transformers with Generalized
Event Knowledge [59.22170796793179]
Transformers Language Models (TLMs) were tested on a benchmark for the textitdynamic estimation of thematic fit
Our results show that TLMs can reach performances that are comparable to those achieved by SDM.
However, additional analysis consistently suggests that TLMs do not capture important aspects of event knowledge.
arXiv Detail & Related papers (2021-07-22T20:52:26Z) - Accurate Word Representations with Universal Visual Guidance [55.71425503859685]
This paper proposes a visual representation method to explicitly enhance conventional word embedding with multiple-aspect senses from visual guidance.
We build a small-scale word-image dictionary from a multimodal seed dataset where each word corresponds to diverse related images.
Experiments on 12 natural language understanding and machine translation tasks further verify the effectiveness and the generalization capability of the proposed approach.
arXiv Detail & Related papers (2020-12-30T09:11:50Z) - Model Choices Influence Attributive Word Associations: A Semi-supervised
Analysis of Static Word Embeddings [0.0]
This work aims to assess attributive word associations across five different static word embedding architectures.
Our results reveal that the choice of the context learning flavor during embedding training (CBOW vs skip-gram) impacts the word association distinguishability and word embeddings' sensitivity to deviations in the training corpora.
arXiv Detail & Related papers (2020-12-14T22:27:18Z) - Comparative Analysis of Word Embeddings for Capturing Word Similarities [0.0]
Distributed language representation has become the most widely used technique for language representation in various natural language processing tasks.
Most of the natural language processing models that are based on deep learning techniques use already pre-trained distributed word representations, commonly called word embeddings.
selecting the appropriate word embeddings is a perplexing task since the projected embedding space is not intuitive to humans.
arXiv Detail & Related papers (2020-05-08T01:16:03Z) - Analyzing the Surprising Variability in Word Embedding Stability Across
Languages [46.84861591608146]
We discuss linguistic properties that are related to stability, drawing out insights about correlations with affixing, language gender systems, and other features.
This has implications for embedding use, particularly in research that uses them to study language trends.
arXiv Detail & Related papers (2020-04-30T15:24:43Z) - A Survey on Contextual Embeddings [48.04732268018772]
Contextual embeddings assign each word a representation based on its context, capturing uses of words across varied contexts and encoding knowledge that transfers across languages.
We review existing contextual embedding models, cross-lingual polyglot pre-training, the application of contextual embeddings in downstream tasks, model compression, and model analyses.
arXiv Detail & Related papers (2020-03-16T15:22:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.