AQuaMuSe: Automatically Generating Datasets for Query-Based
Multi-Document Summarization
- URL: http://arxiv.org/abs/2010.12694v1
- Date: Fri, 23 Oct 2020 22:38:18 GMT
- Title: AQuaMuSe: Automatically Generating Datasets for Query-Based
Multi-Document Summarization
- Authors: Sayali Kulkarni, Sheide Chammas, Wan Zhu, Fei Sha, Eugene Ie
- Abstract summary: We propose a scalable approach called AQuaMuSe to automatically mine qMDS examples from question answering datasets and large document corpora.
We publicly release a specific instance of an AQuaMuSe dataset with 5,519 query-based summaries, each associated with an average of 6 input documents selected from an index of 355M documents from Common Crawl.
- Score: 17.098075160558576
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Summarization is the task of compressing source document(s) into coherent and
succinct passages. This is a valuable tool to present users with concise and
accurate sketch of the top ranked documents related to their queries.
Query-based multi-document summarization (qMDS) addresses this pervasive need,
but the research is severely limited due to lack of training and evaluation
datasets as existing single-document and multi-document summarization datasets
are inadequate in form and scale. We propose a scalable approach called
AQuaMuSe to automatically mine qMDS examples from question answering datasets
and large document corpora. Our approach is unique in the sense that it can
general a dual dataset -- for extractive and abstractive summaries both. We
publicly release a specific instance of an AQuaMuSe dataset with 5,519
query-based summaries, each associated with an average of 6 input documents
selected from an index of 355M documents from Common Crawl. Extensive
evaluation of the dataset along with baseline summarization model experiments
are provided.
Related papers
- The Power of Summary-Source Alignments [62.76959473193149]
Multi-document summarization (MDS) is a challenging task, often decomposed to subtasks of salience and redundancy detection.
alignment of corresponding sentences between a reference summary and its source documents has been leveraged to generate training data.
This paper proposes extending the summary-source alignment framework by applying it at the more fine-grained proposition span level.
arXiv Detail & Related papers (2024-06-02T19:35:19Z) - QFMTS: Generating Query-Focused Summaries over Multi-Table Inputs [63.98556480088152]
Table summarization is a crucial task aimed at condensing information into concise and comprehensible textual summaries.
We propose a novel method to address these limitations by introducing query-focused multi-table summarization.
Our approach, which comprises a table serialization module, a summarization controller, and a large language model, generates query-dependent table summaries tailored to users' information needs.
arXiv Detail & Related papers (2024-05-08T15:05:55Z) - Non-Parametric Memory Guidance for Multi-Document Summarization [0.0]
We propose a retriever-guided model combined with non-parametric memory for summary generation.
This model retrieves relevant candidates from a database and then generates the summary considering the candidates with a copy mechanism and the source documents.
Our method is evaluated on the MultiXScience dataset which includes scientific articles.
arXiv Detail & Related papers (2023-11-14T07:41:48Z) - LMGQS: A Large-scale Dataset for Query-focused Summarization [77.6179359525065]
We convert four generic summarization benchmarks into a new QFS benchmark dataset, LMGQS.
We establish baselines with state-of-the-art summarization models.
We achieve state-of-the-art zero-shot and supervised performance on multiple existing QFS benchmarks.
arXiv Detail & Related papers (2023-05-22T14:53:45Z) - How "Multi" is Multi-Document Summarization? [15.574673241564932]
It is expected that both reference summaries in MDS datasets, as well as system summaries, would indeed be based on dispersed information.
We propose an automated measure for evaluating the degree to which a summary is disperse''
Our results show that certain MDS datasets barely require combining information from multiple documents, where a single document often covers the full summary content.
arXiv Detail & Related papers (2022-10-23T10:20:09Z) - HowSumm: A Multi-Document Summarization Dataset Derived from WikiHow
Articles [8.53502615629675]
We present HowSumm, a novel large-scale dataset for the task of query-focused multi-document summarization (qMDS)
This use-case is different from the use-cases covered in existing multi-document summarization (MDS) datasets and is applicable to educational and industrial scenarios.
We describe the creation of the dataset and discuss the unique features that distinguish it from other summarization corpora.
arXiv Detail & Related papers (2021-10-07T04:44:32Z) - Text Summarization with Latent Queries [60.468323530248945]
We introduce LaQSum, the first unified text summarization system that learns Latent Queries from documents for abstractive summarization with any existing query forms.
Under a deep generative framework, our system jointly optimize a latent query model and a conditional language model, allowing users to plug-and-play queries of any type at test time.
Our system robustly outperforms strong comparison systems across summarization benchmarks with different query types, document settings, and target domains.
arXiv Detail & Related papers (2021-05-31T21:14:58Z) - Data Augmentation for Abstractive Query-Focused Multi-Document
Summarization [129.96147867496205]
We present two QMDS training datasets, which we construct using two data augmentation methods.
These two datasets have complementary properties, i.e., QMDSCNN has real summaries but queries are simulated, while QMDSIR has real queries but simulated summaries.
We build end-to-end neural network models on the combined datasets that yield new state-of-the-art transfer results on DUC datasets.
arXiv Detail & Related papers (2021-03-02T16:57:01Z) - WSL-DS: Weakly Supervised Learning with Distant Supervision for Query
Focused Multi-Document Abstractive Summarization [16.048329028104643]
In the Query Focused Multi-Document Summarization (QF-MDS) task, a set of documents and a query are given where the goal is to generate a summary from these documents.
One major challenge for this task is the lack of availability of labeled training datasets.
We propose a novel weakly supervised learning approach via utilizing distant supervision.
arXiv Detail & Related papers (2020-11-03T02:02:55Z) - QBSUM: a Large-Scale Query-Based Document Summarization Dataset from
Real-world Applications [20.507631900617817]
We present QBSUM, a high-quality large-scale dataset consisting of 49,000+ data samples for the task of Chinese query-based document summarization.
We also propose multiple unsupervised and supervised solutions to the task and demonstrate their high-speed inference and superior performance via both offline experiments and online A/B tests.
arXiv Detail & Related papers (2020-10-27T07:30:04Z) - SciREX: A Challenge Dataset for Document-Level Information Extraction [56.83748634747753]
It is challenging to create a large-scale information extraction dataset at the document level.
We introduce SciREX, a document level IE dataset that encompasses multiple IE tasks.
We develop a neural model as a strong baseline that extends previous state-of-the-art IE models to document-level IE.
arXiv Detail & Related papers (2020-05-01T17:30:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.