Effective Distant Supervision for Temporal Relation Extraction
- URL: http://arxiv.org/abs/2010.12755v2
- Date: Wed, 7 Apr 2021 00:56:48 GMT
- Title: Effective Distant Supervision for Temporal Relation Extraction
- Authors: Xinyu Zhao, Shih-ting Lin, Greg Durrett
- Abstract summary: A principal barrier to training temporal relation extraction models in new domains is the lack of varied, high quality examples.
We present a method of automatically collecting distantly-supervised examples of temporal relations.
- Score: 49.20329405920023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A principal barrier to training temporal relation extraction models in new
domains is the lack of varied, high quality examples and the challenge of
collecting more. We present a method of automatically collecting
distantly-supervised examples of temporal relations. We scrape and
automatically label event pairs where the temporal relations are made explicit
in text, then mask out those explicit cues, forcing a model trained on this
data to learn other signals. We demonstrate that a pre-trained Transformer
model is able to transfer from the weakly labeled examples to human-annotated
benchmarks in both zero-shot and few-shot settings, and that the masking scheme
is important in improving generalization.
Related papers
- Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
Diffusion models operate over a sequence of timesteps instead of instantaneous input-output relationships in previous contexts.
We present Diffusion-TracIn that incorporates this temporal dynamics and observe that samples' loss gradient norms are highly dependent on timestep.
We introduce Diffusion-ReTrac as a re-normalized adaptation that enables the retrieval of training samples more targeted to the test sample of interest.
arXiv Detail & Related papers (2024-01-17T07:58:18Z) - Explaining Time Series via Contrastive and Locally Sparse Perturbations [45.055327583283315]
ContraLSP is a sparse model that introduces counterfactual samples to build uninformative perturbations but keeps distribution using contrastive learning.
Empirical studies on both synthetic and real-world datasets show that ContraLSP outperforms state-of-the-art models.
arXiv Detail & Related papers (2024-01-16T18:27:37Z) - Mitigating Shortcut Learning with Diffusion Counterfactuals and Diverse Ensembles [95.49699178874683]
We propose DiffDiv, an ensemble diversification framework exploiting Diffusion Probabilistic Models (DPMs)
We show that DPMs can generate images with novel feature combinations, even when trained on samples displaying correlated input features.
We show that DPM-guided diversification is sufficient to remove dependence on shortcut cues, without a need for additional supervised signals.
arXiv Detail & Related papers (2023-11-23T15:47:33Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
We study a generative framework that seeks to combine the strengths of both: Motivated by a moment-matching objective to mitigate compounding error, we optimize a local (but forward-looking) transition policy.
At inference, the learned policy serves as the generator for iterative sampling, and the learned energy serves as a trajectory-level measure for evaluating sample quality.
arXiv Detail & Related papers (2023-11-02T16:45:25Z) - Using Early Readouts to Mediate Featural Bias in Distillation [30.5299408494168]
Deep networks tend to learn spurious feature-label correlations in real-world supervised learning tasks.
We propose a novel early readout mechanism whereby we attempt to predict the label using representations from earlier network layers.
arXiv Detail & Related papers (2023-10-28T04:58:15Z) - Manifold attack [0.22419496088582863]
In this paper, we enforce the manifold preservation (manifold learning) from the original data into latent presentation.
We show that our approach of regularization provides improvements for the accuracy rate and for the robustness to adversarial examples.
arXiv Detail & Related papers (2020-09-13T09:39:32Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
Replay in neural networks involves training on sequential data with memorized samples, which counteracts forgetting of previous behavior caused by non-stationarity.
We present a method where these auxiliary samples are generated on the fly, given only the model that is being trained for the assessed objective.
Instead the implicit memory of learned samples within the assessed model itself is exploited.
arXiv Detail & Related papers (2020-06-22T15:07:06Z) - On Feature Normalization and Data Augmentation [55.115583969831]
Moment Exchange encourages the model to utilize the moment information also for recognition models.
We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels.
As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation approaches.
arXiv Detail & Related papers (2020-02-25T18:59:05Z) - Conditional Mutual information-based Contrastive Loss for Financial Time
Series Forecasting [12.0855096102517]
We present a representation learning framework for financial time series forecasting.
In this paper, we propose to first learn compact representations from time series data, then use the learned representations to train a simpler model for predicting time series movements.
arXiv Detail & Related papers (2020-02-18T15:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.