論文の概要: Improving Multilingual Models with Language-Clustered Vocabularies
- arxiv url: http://arxiv.org/abs/2010.12777v1
- Date: Sat, 24 Oct 2020 04:49:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 12:10:08.607555
- Title: Improving Multilingual Models with Language-Clustered Vocabularies
- Title(参考訳): 言語クラスタ語彙を用いた多言語モデルの改善
- Authors: Hyung Won Chung, Dan Garrette, Kiat Chuan Tan, Jason Riesa
- Abstract要約: 本稿では,複数の自動派生言語クラスタの別々に訓練された語彙を組み合わせた多言語語彙生成のための新しい手法を提案する。
我々の実験は、主要なマルチ言語ベンチマークタスクにおける言語間の改善を示す。
- 参考スコア(独自算出の注目度): 8.587129426070979
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State-of-the-art multilingual models depend on vocabularies that cover all of
the languages the model will expect to see at inference time, but the standard
methods for generating those vocabularies are not ideal for massively
multilingual applications. In this work, we introduce a novel procedure for
multilingual vocabulary generation that combines the separately trained
vocabularies of several automatically derived language clusters, thus balancing
the trade-off between cross-lingual subword sharing and language-specific
vocabularies. Our experiments show improvements across languages on key
multilingual benchmark tasks TyDi QA (+2.9 F1), XNLI (+2.1\%), and WikiAnn NER
(+2.8 F1) and factor of 8 reduction in out-of-vocabulary rate, all without
increasing the size of the model or data.
- Abstract(参考訳): 最先端の多言語モデルは、モデルが推論時に期待する全ての言語をカバーする語彙に依存するが、それらの語彙を生成する標準的な方法は、大規模多言語アプリケーションには理想的ではない。
本稿では,多言語語彙生成のための新しい手法を提案する。この手法では,複数の自動派生言語クラスタの個別に訓練された語彙を組み合わせることで,言語間サブワード共有と言語固有の語彙間のトレードオフをバランスさせる。
実験では,多言語ベンチマークタスクであるtydi qa (+2.9 f1), xnli (+2.1\%), wikiann ner (+2.8 f1) において言語横断性が改善され,モデルやデータのサイズを増加させることなく,語彙外レートが8つ削減された。
関連論文リスト
- LlamaTurk: Adapting Open-Source Generative Large Language Models for Low-Resource Language [2.9914612342004503]
本研究は、主に英語で訓練された大規模な言語モデルを低リソース言語に適応させることにより、代替的な解決策を探求する。
継続訓練,命令細調整,タスク特化細調整,語彙拡張など,さまざまな戦略を評価する。
その結果、継続学習は、難易度スコアに反映されるような言語理解を向上し、タスク固有のチューニングは、一般的に下流タスクのパフォーマンスを向上することを示した。
論文 参考訳(メタデータ) (2024-05-13T13:41:59Z) - The Less the Merrier? Investigating Language Representation in
Multilingual Models [8.632506864465501]
多言語モデルにおける言語表現について検討する。
我々は、コミュニティ中心のモデルが、低リソース言語で同じ家系の言語を区別する上で、より良い性能を発揮することを実験から観察した。
論文 参考訳(メタデータ) (2023-10-20T02:26:34Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - Tokenization Impacts Multilingual Language Modeling: Assessing
Vocabulary Allocation and Overlap Across Languages [3.716965622352967]
サブワードトークン化器で観測される語彙表現と語彙重複の質を評価するための新しい基準を提案する。
以上の結果から,言語間の語彙の重複は,特定の下流課題に支障を来す可能性があることが示唆された。
論文 参考訳(メタデータ) (2023-05-26T18:06:49Z) - Multilingual BERT has an accent: Evaluating English influences on
fluency in multilingual models [23.62852626011989]
我々は,高次情報源言語における文法構造が低次情報源言語に肥大化したことを示す。
このバイアスは、多言語モデルの流布度とモノリンガルのスペイン語とギリシア語のモデルの流布度を比較する新しい方法によって示される。
論文 参考訳(メタデータ) (2022-10-11T17:06:38Z) - Allocating Large Vocabulary Capacity for Cross-lingual Language Model
Pre-training [59.571632468137075]
最近の言語間言語モデルでは,語彙の容量が限られているため,多くの言語が不足していることがわかった。
本稿では,各言語の語彙能力を決定するアルゴリズムであるVoCapを提案する。
この問題に対処するために,k-NNに基づくターゲットサンプリングを提案し,コストの高いソフトマックスを高速化する。
論文 参考訳(メタデータ) (2021-09-15T14:04:16Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
多言語事前学習モデルから言語表現を生成し、言語分析を行う。
すべての対象言語を複数のグループにクラスタリングし、表現のスプラックバンドとして各グループに名前を付ける。
言語間ベンチマークで実験を行い、強いベースラインと比較して大幅な改善が達成された。
論文 参考訳(メタデータ) (2021-09-01T09:32:06Z) - Specializing Multilingual Language Models: An Empirical Study [50.7526245872855]
事前訓練された多言語モデルからの文脈化語表現は、自然言語タスクに対処するデファクトスタンダードとなっている。
これらのモデルではまれに、あるいは一度も見られない言語では、そのようなモデルを直接使用すると、最適な表現やデータの使用につながることが多い。
論文 参考訳(メタデータ) (2021-06-16T18:13:55Z) - Are Multilingual Models Effective in Code-Switching? [57.78477547424949]
多言語モデルの有効性を検討し,複合言語設定の能力と適応性について検討する。
この結果から,事前学習した多言語モデルでは,コードスイッチングにおける高品質な表現が必ずしも保証されないことが示唆された。
論文 参考訳(メタデータ) (2021-03-24T16:20:02Z) - Learning to Scale Multilingual Representations for Vision-Language Tasks [51.27839182889422]
SMALRの有効性は、これまでビジョン言語タスクでサポートされた2倍以上の10の多言語で実証されている。
単語の埋め込み手法と比較して,訓練パラメータの1/5以下で,複数言語による画像文検索と先行作業の3~4%の性能評価を行った。
論文 参考訳(メタデータ) (2020-04-09T01:03:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。