Inductive Bias of Gradient Descent for Exponentially Weight Normalized
Smooth Homogeneous Neural Nets
- URL: http://arxiv.org/abs/2010.12909v2
- Date: Thu, 26 Nov 2020 05:30:53 GMT
- Title: Inductive Bias of Gradient Descent for Exponentially Weight Normalized
Smooth Homogeneous Neural Nets
- Authors: Depen Morwani, Harish G. Ramaswamy
- Abstract summary: We analyze the inductive bias of gradient descent for weight normalized smooth homogeneous neural nets, when trained on exponential or cross-entropy loss.
This paper shows that the gradient flow path with EWN is equivalent to gradient flow on standard networks with an adaptive learning rate.
- Score: 1.7259824817932292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze the inductive bias of gradient descent for weight normalized
smooth homogeneous neural nets, when trained on exponential or cross-entropy
loss. Our analysis focuses on exponential weight normalization (EWN), which
encourages weight updates along the radial direction. This paper shows that the
gradient flow path with EWN is equivalent to gradient flow on standard networks
with an adaptive learning rate, and hence causes the weights to be updated in a
way that prefers asymptotic relative sparsity. These results can be extended to
hold for gradient descent via an appropriate adaptive learning rate. The
asymptotic convergence rate of the loss in this setting is given by
$\Theta(\frac{1}{t(\log t)^2})$, and is independent of the depth of the
network. We contrast these results with the inductive bias of standard weight
normalization (SWN) and unnormalized architectures, and demonstrate their
implications on synthetic data sets.Experimental results on simple data sets
and architectures support our claim on sparse EWN solutions, even with SGD.
This demonstrates its potential applications in learning prunable neural
networks.
Related papers
- Non-asymptotic Analysis of Biased Adaptive Stochastic Approximation [0.8192907805418583]
We show that biased gradients converge to critical points for smooth non- functions.
We show how the effect of bias can be reduced by appropriate tuning.
arXiv Detail & Related papers (2024-02-05T10:17:36Z) - Convergence Analysis for Learning Orthonormal Deep Linear Neural
Networks [27.29463801531576]
We provide convergence analysis for training orthonormal deep linear neural networks.
Our results shed light on how increasing the number of hidden layers can impact the convergence speed.
arXiv Detail & Related papers (2023-11-24T18:46:54Z) - Implicit Bias of Gradient Descent for Two-layer ReLU and Leaky ReLU
Networks on Nearly-orthogonal Data [66.1211659120882]
The implicit bias towards solutions with favorable properties is believed to be a key reason why neural networks trained by gradient-based optimization can generalize well.
While the implicit bias of gradient flow has been widely studied for homogeneous neural networks (including ReLU and leaky ReLU networks), the implicit bias of gradient descent is currently only understood for smooth neural networks.
arXiv Detail & Related papers (2023-10-29T08:47:48Z) - Gradient-Based Feature Learning under Structured Data [57.76552698981579]
In the anisotropic setting, the commonly used spherical gradient dynamics may fail to recover the true direction.
We show that appropriate weight normalization that is reminiscent of batch normalization can alleviate this issue.
In particular, under the spiked model with a suitably large spike, the sample complexity of gradient-based training can be made independent of the information exponent.
arXiv Detail & Related papers (2023-09-07T16:55:50Z) - Robust Implicit Regularization via Weight Normalization [5.37610807422229]
We show that weight normalization enables a robust bias that persists even if the weights are at practically large scale.
Experiments suggest that the gains in both convergence speed and robustness of the implicit bias are improved dramatically by using weight normalization.
arXiv Detail & Related papers (2023-05-09T13:38:55Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
In this work, we investigate the implicit bias of gradient flow and gradient descent in two-layer fully-connected neural networks with ReLU activations.
For gradient flow, we leverage recent work on the implicit bias for homogeneous neural networks to show that leakyally, gradient flow produces a neural network with rank at most two.
For gradient descent, provided the random variance is small enough, we show that a single step of gradient descent suffices to drastically reduce the rank of the network, and that the rank remains small throughout training.
arXiv Detail & Related papers (2022-10-13T15:09:54Z) - Vanishing Curvature and the Power of Adaptive Methods in Randomly
Initialized Deep Networks [30.467121747150816]
This paper revisits the so-called vanishing gradient phenomenon, which commonly occurs in deep randomly neural networks.
We first show that vanishing gradients cannot be circumvented when the network width scales with less than O(depth)
arXiv Detail & Related papers (2021-06-07T16:29:59Z) - Scaling Equilibrium Propagation to Deep ConvNets by Drastically Reducing
its Gradient Estimator Bias [65.13042449121411]
In practice, training a network with the gradient estimates provided by EP does not scale to visual tasks harder than MNIST.
We show that a bias in the gradient estimate of EP, inherent in the use of finite nudging, is responsible for this phenomenon.
We apply these techniques to train an architecture with asymmetric forward and backward connections, yielding a 13.2% test error.
arXiv Detail & Related papers (2020-06-06T09:36:07Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
We propose a rigorous estimation of the global curvature of weights across layers by approximating and controlling the norm of their Hessian matrix.
Our experiments on Word2Vec and the MNIST/CIFAR image classification tasks confirm that tracking the Hessian norm is a useful diagnostic tool.
arXiv Detail & Related papers (2020-04-20T18:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.