Convergence Analysis for Learning Orthonormal Deep Linear Neural
Networks
- URL: http://arxiv.org/abs/2311.14658v2
- Date: Thu, 29 Feb 2024 05:14:28 GMT
- Title: Convergence Analysis for Learning Orthonormal Deep Linear Neural
Networks
- Authors: Zhen Qin, Xuwei Tan, Zhihui Zhu
- Abstract summary: We provide convergence analysis for training orthonormal deep linear neural networks.
Our results shed light on how increasing the number of hidden layers can impact the convergence speed.
- Score: 27.29463801531576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Enforcing orthonormal or isometric property for the weight matrices has been
shown to enhance the training of deep neural networks by mitigating gradient
exploding/vanishing and increasing the robustness of the learned networks.
However, despite its practical performance, the theoretical analysis of
orthonormality in neural networks is still lacking; for example, how
orthonormality affects the convergence of the training process. In this letter,
we aim to bridge this gap by providing convergence analysis for training
orthonormal deep linear neural networks. Specifically, we show that Riemannian
gradient descent with an appropriate initialization converges at a linear rate
for training orthonormal deep linear neural networks with a class of loss
functions. Unlike existing works that enforce orthonormal weight matrices for
all the layers, our approach excludes this requirement for one layer, which is
crucial to establish the convergence guarantee. Our results shed light on how
increasing the number of hidden layers can impact the convergence speed.
Experimental results validate our theoretical analysis.
Related papers
- Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
We construct an exact power-series representation of the neural network in a finite neighborhood of the initial weights.
We prove that, regardless of width, the training sequence produced by gradient descent can be exactly replicated by regularized sequential learning.
arXiv Detail & Related papers (2023-02-01T03:18:07Z) - Training invariances and the low-rank phenomenon: beyond linear networks [44.02161831977037]
We show that when one trains a deep linear network with logistic or exponential loss on linearly separable data, the weights converge to rank-$1$ matrices.
This is the first time a low-rank phenomenon is proven rigorously for nonlinear ReLU-activated feedforward networks.
Our proof relies on a specific decomposition of the network into a multilinear function and another ReLU network whose weights are constant under a certain parameter directional convergence.
arXiv Detail & Related papers (2022-01-28T07:31:19Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
We take a step towards closing the gap between theory and practice by significantly improving the known theoretical bounds on both the network width and the convergence time.
We show that convergence to a global minimum is guaranteed for networks with quadratic widths in the sample size and linear in their depth at a time logarithmic in both.
Our analysis and convergence bounds are derived via the construction of a surrogate network with fixed activation patterns that can be transformed at any time to an equivalent ReLU network of a reasonable size.
arXiv Detail & Related papers (2021-01-12T00:40:45Z) - Optimization Theory for ReLU Neural Networks Trained with Normalization
Layers [82.61117235807606]
The success of deep neural networks in part due to the use of normalization layers.
Our analysis shows how the introduction of normalization changes the landscape and can enable faster activation.
arXiv Detail & Related papers (2020-06-11T23:55:54Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
We propose a rigorous estimation of the global curvature of weights across layers by approximating and controlling the norm of their Hessian matrix.
Our experiments on Word2Vec and the MNIST/CIFAR image classification tasks confirm that tracking the Hessian norm is a useful diagnostic tool.
arXiv Detail & Related papers (2020-04-20T18:12:56Z) - Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks
Trained with the Logistic Loss [0.0]
Neural networks trained to minimize the logistic (a.k.a. cross-entropy) loss with gradient-based methods are observed to perform well in many supervised classification tasks.
We analyze the training and generalization behavior of infinitely wide two-layer neural networks with homogeneous activations.
arXiv Detail & Related papers (2020-02-11T15:42:09Z) - A Generalized Neural Tangent Kernel Analysis for Two-layer Neural
Networks [87.23360438947114]
We show that noisy gradient descent with weight decay can still exhibit a " Kernel-like" behavior.
This implies that the training loss converges linearly up to a certain accuracy.
We also establish a novel generalization error bound for two-layer neural networks trained by noisy gradient descent with weight decay.
arXiv Detail & Related papers (2020-02-10T18:56:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.