Disease Normalization with Graph Embeddings
- URL: http://arxiv.org/abs/2010.12925v1
- Date: Sat, 24 Oct 2020 16:25:05 GMT
- Title: Disease Normalization with Graph Embeddings
- Authors: Dhruba Pujary and Camilo Thorne and Wilker Aziz
- Abstract summary: We train and test our methods on the known NCBI disease benchmark corpus.
We propose to represent disease names by leveraging MeSH's graphical structure together with the lexical information available in the taxonomy.
We also show that combining neural named entity recognition models with our graph-based entity linking methods via multitask learning leads to improved disease recognition in the NCBI corpus.
- Score: 12.70213916725476
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The detection and normalization of diseases in biomedical texts are key
biomedical natural language processing tasks. Disease names need not only be
identified, but also normalized or linked to clinical taxonomies describing
diseases such as MeSH. In this paper we describe deep learning methods that
tackle both tasks. We train and test our methods on the known NCBI disease
benchmark corpus. We propose to represent disease names by leveraging MeSH's
graphical structure together with the lexical information available in the
taxonomy using graph embeddings. We also show that combining neural named
entity recognition models with our graph-based entity linking methods via
multitask learning leads to improved disease recognition in the NCBI corpus.
Related papers
- Applying BioBERT to Extract Germline Gene-Disease Associations for Building a Knowledge Graph from the Biomedical Literature [0.0]
This paper presents SimpleGermKG, an automatic knowledge graph construction approach that connects germline genes and diseases.
For the extraction of genes and diseases, we employ BioBERT, a pre-trained BERT model on biomedical corpora.
For semantic relationships between articles, genes, and diseases, we implemented a part-whole relation approach.
Our knowledge graph contains 297 genes, 130 diseases, and 46,747 triples.
arXiv Detail & Related papers (2023-09-11T18:05:12Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
This paper proposes EBOCA, an ontology that describes (i) biomedical domain concepts and associations between them, and (ii) evidences supporting these associations.
Test data coming from a subset of DISNET and automatic association extractions from texts has been transformed to create a Knowledge Graph that can be used in real scenarios.
arXiv Detail & Related papers (2022-08-01T18:47:03Z) - Domain Invariant Model with Graph Convolutional Network for Mammogram
Classification [49.691629817104925]
We propose a novel framework, namely Domain Invariant Model with Graph Convolutional Network (DIM-GCN)
We first propose a Bayesian network, which explicitly decomposes the latent variables into disease-related and other disease-irrelevant parts that are provable to be disentangled from each other.
To better capture the macroscopic features, we leverage the observed clinical attributes as a goal for reconstruction, via Graph Convolutional Network (GCN)
arXiv Detail & Related papers (2022-04-21T08:23:44Z) - Automatic Biomedical Term Clustering by Learning Fine-grained Term
Representations [0.8154691566915505]
State-of-the-art term embeddings leverage pretrained language models to encode terms and use synonyms and relation knowledge from knowledge graphs to guide contrastive learning.
These embeddings are not sensitive to minor textual differences which leads to failure for biomedical term clustering.
To alleviate this problem, we adjust the sampling strategy in pretraining term embeddings by providing dynamic hard positive and negative samples.
We name our proposed method as CODER++, and it has been applied in clustering biomedical concepts in the newly released Biomedical Knowledge Graph named BIOS.
arXiv Detail & Related papers (2022-04-01T12:30:58Z) - Clinical Named Entity Recognition using Contextualized Token
Representations [49.036805795072645]
This paper introduces the technique of contextualized word embedding to better capture the semantic meaning of each word based on its context.
We pre-train two deep contextualized language models, Clinical Embeddings from Language Model (C-ELMo) and Clinical Contextual String Embeddings (C-Flair)
Explicit experiments show that our models gain dramatic improvements compared to both static word embeddings and domain-generic language models.
arXiv Detail & Related papers (2021-06-23T18:12:58Z) - Neural Multi-Hop Reasoning With Logical Rules on Biomedical Knowledge
Graphs [10.244651735862627]
We conduct an empirical study based on the real-world task of drug repurposing.
We formulate this task as a link prediction problem where both compounds and diseases correspond to entities in a knowledge graph.
We propose a new method, PoLo, that combines policy-guided walks based on reinforcement learning with logical rules.
arXiv Detail & Related papers (2021-03-18T16:46:11Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Integration of Domain Knowledge using Medical Knowledge Graph Deep
Learning for Cancer Phenotyping [6.077023952306772]
We propose a method to integrate external knowledge from medical terminology into the context captured by word embeddings.
We evaluate the proposed approach using a Multitask Convolutional Neural Network (MT-CNN) to extract six cancer characteristics from a dataset of 900K cancer pathology reports.
arXiv Detail & Related papers (2021-01-05T03:59:43Z) - A Lightweight Neural Model for Biomedical Entity Linking [1.8047694351309205]
We propose a lightweight neural method for biomedical entity linking.
Our method uses a simple alignment layer with attention mechanisms to capture the variations between mention and entity names.
Our model is competitive with previous work on standard evaluation benchmarks.
arXiv Detail & Related papers (2020-12-16T10:34:37Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - Dynamic Graph Correlation Learning for Disease Diagnosis with Incomplete
Labels [66.57101219176275]
Disease diagnosis on chest X-ray images is a challenging multi-label classification task.
We propose a Disease Diagnosis Graph Convolutional Network (DD-GCN) that presents a novel view of investigating the inter-dependency among different diseases.
Our method is the first to build a graph over the feature maps with a dynamic adjacency matrix for correlation learning.
arXiv Detail & Related papers (2020-02-26T17:10:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.