Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model
- URL: http://arxiv.org/abs/2005.07377v1
- Date: Fri, 15 May 2020 06:57:54 GMT
- Title: Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model
- Authors: Quande Liu, Lequan Yu, Luyang Luo, Qi Dou, Pheng Ann Heng
- Abstract summary: We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
- Score: 71.80319052891817
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training deep neural networks usually requires a large amount of labeled data
to obtain good performance. However, in medical image analysis, obtaining
high-quality labels for the data is laborious and expensive, as accurately
annotating medical images demands expertise knowledge of the clinicians. In
this paper, we present a novel relation-driven semi-supervised framework for
medical image classification. It is a consistency-based method which exploits
the unlabeled data by encouraging the prediction consistency of given input
under perturbations, and leverages a self-ensembling model to produce
high-quality consistency targets for the unlabeled data. Considering that human
diagnosis often refers to previous analogous cases to make reliable decisions,
we introduce a novel sample relation consistency (SRC) paradigm to effectively
exploit unlabeled data by modeling the relationship information among different
samples. Superior to existing consistency-based methods which simply enforce
consistency of individual predictions, our framework explicitly enforces the
consistency of semantic relation among different samples under perturbations,
encouraging the model to explore extra semantic information from unlabeled
data. We have conducted extensive experiments to evaluate our method on two
public benchmark medical image classification datasets, i.e.,skin lesion
diagnosis with ISIC 2018 challenge and thorax disease classification with
ChestX-ray14. Our method outperforms many state-of-the-art semi-supervised
learning methods on both single-label and multi-label image classification
scenarios.
Related papers
- Cross-model Mutual Learning for Exemplar-based Medical Image Segmentation [25.874281336821685]
Cross-model Mutual learning framework for Exemplar-based Medical image (CMEMS)
We introduce a novel Cross-model Mutual learning framework for Exemplar-based Medical image (CMEMS)
arXiv Detail & Related papers (2024-04-18T00:18:07Z) - Integration of Self-Supervised BYOL in Semi-Supervised Medical Image Recognition [10.317372960942972]
We propose an innovative approach by integrating self-supervised learning into semi-supervised models to enhance medical image recognition.
Our approach optimally leverages unlabeled data, outperforming existing methods in terms of accuracy for medical image recognition.
arXiv Detail & Related papers (2024-04-16T09:12:16Z) - Graph-Ensemble Learning Model for Multi-label Skin Lesion Classification
using Dermoscopy and Clinical Images [7.159532626507458]
This study introduces a Graph Convolution Network (GCN) to exploit prior co-occurrence between each category as a correlation matrix into the deep learning model for the multi-label classification.
We propose a Graph-Ensemble Learning Model (GELN) that views the prediction from GCN as complementary information of the predictions from the fusion model.
arXiv Detail & Related papers (2023-07-04T13:19:57Z) - Analysing the effectiveness of a generative model for semi-supervised
medical image segmentation [23.898954721893855]
State-of-the-art in automated segmentation remains supervised learning, employing discriminative models such as U-Net.
Semi-supervised learning (SSL) attempts to leverage the abundance of unlabelled data to obtain more robust and reliable models.
Deep generative models such as the SemanticGAN are truly viable alternatives to tackle challenging medical image segmentation problems.
arXiv Detail & Related papers (2022-11-03T15:19:59Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Margin-Aware Intra-Class Novelty Identification for Medical Images [2.647674705784439]
We propose a hybrid model - Transformation-based Embedding learning for Novelty Detection (TEND)
With a pre-trained autoencoder as image feature extractor, TEND learns to discriminate the feature embeddings of in-distribution data from the transformed counterparts as fake out-of-distribution inputs.
arXiv Detail & Related papers (2021-07-31T00:10:26Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Collaborative Unsupervised Domain Adaptation for Medical Image Diagnosis [102.40869566439514]
We seek to exploit rich labeled data from relevant domains to help the learning in the target task via Unsupervised Domain Adaptation (UDA)
Unlike most UDA methods that rely on clean labeled data or assume samples are equally transferable, we innovatively propose a Collaborative Unsupervised Domain Adaptation algorithm.
We theoretically analyze the generalization performance of the proposed method, and also empirically evaluate it on both medical and general images.
arXiv Detail & Related papers (2020-07-05T11:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.