論文の概要: VoteNet++: Registration Refinement for Multi-Atlas Segmentation
- arxiv url: http://arxiv.org/abs/2010.13484v1
- Date: Mon, 26 Oct 2020 11:16:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-02 18:49:20.929207
- Title: VoteNet++: Registration Refinement for Multi-Atlas Segmentation
- Title(参考訳): VoteNet++: マルチアトラスセグメンテーションの登録リファインメント
- Authors: Zhipeng Ding, Marc Niethammer
- Abstract要約: 我々は,画像解剖学的外観と予測ラベルに基づいて,ボリューム変位場を用いて登録を洗練する。
提案手法により膝の3次元磁気共鳴データセットにおけるMAS性能が向上することを示した。
- 参考スコア(独自算出の注目度): 18.338563869053065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-atlas segmentation (MAS) is a popular image segmentation technique for
medical images. In this work, we improve the performance of MAS by correcting
registration errors before label fusion. Specifically, we use a volumetric
displacement field to refine registrations based on image anatomical appearance
and predicted labels. We show the influence of the initial spatial alignment as
well as the beneficial effect of using label information for MAS performance.
Experiments demonstrate that the proposed refinement approach improves MAS
performance on a 3D magnetic resonance dataset of the knee.
- Abstract(参考訳): マルチアトラスセグメンテーション(MAS)は医用画像のイメージセグメンテーション技術として人気がある。
本研究では,ラベル融合前の登録誤りを修正することでMASの性能を向上させる。
具体的には、画像の解剖学的外観と予測ラベルに基づいて登録を洗練するために体積変位場を用いる。
我々は,初期空間アライメントの影響と,MAS演奏におけるラベル情報の利用効果を示す。
提案手法により膝の3次元磁気共鳴データセットにおけるMAS性能が向上することを示した。
関連論文リスト
- Dual-Attention Frequency Fusion at Multi-Scale for Joint Segmentation and Deformable Medical Image Registration [2.6089354079273512]
二重注意周波数融合(DAFF-Net)に基づくマルチタスク学習フレームワークを提案する。
DAFF-Netは、単一ステップ推定において、セグメンテーションマスクと密度変形場を同時に達成する。
3つのパブリックな3次元脳磁気共鳴画像(MRI)データセットの実験により、提案されたDAFF-Netとその教師なし変種は、最先端の登録方法より優れていることが示された。
論文 参考訳(メタデータ) (2024-09-29T11:11:04Z) - FBA-Net: Foreground and Background Aware Contrastive Learning for
Semi-Supervised Atrium Segmentation [10.11072886547561]
半教師付き3次元医用画像セグメンテーションのための,前景と背景表現の対照的な学習戦略を提案する。
我々のフレームワークは、半教師付き3次元医用画像セグメンテーションの分野を前進させる可能性を秘めている。
論文 参考訳(メタデータ) (2023-06-27T04:14:50Z) - Few Shot Medical Image Segmentation with Cross Attention Transformer [30.54965157877615]
我々は、CAT-Netと呼ばれる、数ショットの医用画像セグメンテーションのための新しいフレームワークを提案する。
提案するネットワークは,サポート画像とクエリ画像の相関関係を抽出し,有用なフォアグラウンド情報のみに限定する。
提案手法を,Abd-CT,Abd-MRI,Card-MRIの3つの公開データセットで検証した。
論文 参考訳(メタデータ) (2023-03-24T09:10:14Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - Unsupervised Domain Adaptation with Contrastive Learning for OCT
Segmentation [49.59567529191423]
本稿では,新しい未ラベル領域からのボリューム画像のセグメンテーションのための,新しい半教師付き学習フレームワークを提案する。
教師付き学習とコントラスト学習を併用し、3次元の近傍スライス間の類似性を利用したコントラストペア方式を導入する。
論文 参考訳(メタデータ) (2022-03-07T19:02:26Z) - Factorisation-based Image Labelling [0.9319432628663639]
本稿では,潜在変数を持つ生成モデルに基づくパッチベースのラベル伝搬手法を提案する。
提案したモデルを,MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas Labelingのデータを用いて,最先端のモデルと比較した。
論文 参考訳(メタデータ) (2021-11-19T17:10:54Z) - Mask guided attention for fine-grained patchy image classification [22.91753200323264]
きめ細かいパッチ画像分類のためのマスク誘導注意法(MGA)を提案する。
提案手法の有効性を3つの公開パッチ画像データセットで検証する。
我々のアブレーション研究は、MGAがSoyCultivarVeinおよびBtfPISデータセットの精度を2.25%、2%向上させることを示している。
論文 参考訳(メタデータ) (2021-02-04T17:54:50Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
超音波を用いた新しいカテーテルセグメンテーション法を提案する。
提案手法は,1ボリュームあたり0.25秒の効率で最先端の性能を実現した。
論文 参考訳(メタデータ) (2020-10-19T13:56:22Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。