論文の概要: Optimal Importance Sampling for Federated Learning
- arxiv url: http://arxiv.org/abs/2010.13600v1
- Date: Mon, 26 Oct 2020 14:15:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-02 20:06:48.827726
- Title: Optimal Importance Sampling for Federated Learning
- Title(参考訳): フェデレーション学習における最適重要度サンプリング
- Authors: Elsa Rizk, Stefan Vlaski, Ali H. Sayed
- Abstract要約: フェデレートラーニングには、集中型と分散化された処理タスクが混在する。
エージェントとデータのサンプリングは概して一様であるが、本研究では一様でないサンプリングについて考察する。
エージェント選択とデータ選択の両方に最適な重要サンプリング戦略を導出し、置換のない一様サンプリングが元のFedAvgアルゴリズムの性能を向上させることを示す。
- 参考スコア(独自算出の注目度): 57.14673504239551
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning involves a mixture of centralized and decentralized
processing tasks, where a server regularly selects a sample of the agents and
these in turn sample their local data to compute stochastic gradients for their
learning updates. This process runs continually. The sampling of both agents
and data is generally uniform; however, in this work we consider non-uniform
sampling. We derive optimal importance sampling strategies for both agent and
data selection and show that non-uniform sampling without replacement improves
the performance of the original FedAvg algorithm. We run experiments on a
regression and classification problem to illustrate the theoretical results.
- Abstract(参考訳): フェデレートされた学習には、集中型と分散化された処理タスクが混在し、サーバがエージェントのサンプルを定期的に選択し、それらがローカルデータをサンプリングして学習更新の確率勾配を計算する。
このプロセスは継続的に実行される。
エージェントとデータのサンプリングは概して一様であるが、本研究では一様でないサンプリングを検討する。
エージェント選択とデータ選択の両方に最適な重要サンプリング戦略を導出し、置換のない一様サンプリングが元のFedAvgアルゴリズムの性能を向上させることを示す。
理論的結果を説明するために回帰と分類に関する実験を行う。
関連論文リスト
- Balanced Data Sampling for Language Model Training with Clustering [96.46042695333655]
本稿では,学習データのテキスト分布のバランスをとるためにClusterClip Smplingを提案する。
大規模な実験は、ClusterClip Smplingの有効性を検証する。
論文 参考訳(メタデータ) (2024-02-22T13:20:53Z) - Simple and effective data augmentation for compositional generalization [64.00420578048855]
MRをサンプリングし,それらを逆翻訳するデータ拡張法は,合成一般化に有効であることを示す。
注目すべきは、一様分布からのサンプリングは、テスト分布からのサンプリングとほぼ同等に実行されることである。
論文 参考訳(メタデータ) (2024-01-18T09:13:59Z) - Data Pruning via Moving-one-Sample-out [61.45441981346064]
我々は移動1サンプルアウト(MoSo)と呼ばれる新しいデータ処理手法を提案する。
MoSoは、トレーニングセットから最も分かりにくいサンプルを特定し、削除することを目的としている。
実験結果から,MoSoは高プルーニング比で高い性能劣化を効果的に緩和することが示された。
論文 参考訳(メタデータ) (2023-10-23T08:00:03Z) - When to Trust Aggregated Gradients: Addressing Negative Client Sampling
in Federated Learning [41.51682329500003]
本稿では,各ラウンドにおける集約勾配に対するサーバ学習率を調整するための新しい学習率適応機構を提案する。
我々は、最適なサーバ学習率に肯定的な有意義で堅牢な指標を見つけるために、理論的な推論を行う。
論文 参考訳(メタデータ) (2023-01-25T03:52:45Z) - Sampling Through the Lens of Sequential Decision Making [9.101505546901999]
我々はアダプティブ・サンプル・ウィズ・リワード(ASR)と呼ばれる報酬誘導型サンプリング戦略を提案する。
提案手法は,サンプリング過程を最適に調整し,最適性能を実現する。
情報検索とクラスタリングの実証的な結果は、異なるデータセット間でのASRのスーパーブパフォーマンスを示している。
論文 参考訳(メタデータ) (2022-08-17T04:01:29Z) - Achieving Representative Data via Convex Hull Feasibility Sampling
Algorithms [35.29582673348303]
トレーニングデータのバイアスをサンプリングすることは、機械学習システムにおけるアルゴリズムバイアスの主要な原因である。
得られたデータから代表的データセットを収集できるかどうかを高信頼で判断するために,適応的なサンプリング手法を提案する。
論文 参考訳(メタデータ) (2022-04-13T23:14:05Z) - Federated Learning under Importance Sampling [49.17137296715029]
本研究は, サンプリングエージェントと非均一に誘導されるデータに対する重要サンプリングと工夫の効果について検討する。
代替のないサンプリングを含むスキームでは,結果のアーキテクチャの性能は,各エージェントのデータ変動性に関連する2つの要因によって制御される。
論文 参考訳(メタデータ) (2020-12-14T10:08:55Z) - Robust Sampling in Deep Learning [62.997667081978825]
ディープラーニングは、オーバーフィッティングを減らし、一般化を改善するために正規化メカニズムを必要とする。
分散ロバスト最適化に基づく新しい正規化手法によりこの問題に対処する。
トレーニング中は、最悪のサンプルが最適化に最も貢献するものであるように、その正確性に応じてサンプルの選択が行われる。
論文 参考訳(メタデータ) (2020-06-04T09:46:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。