Loss-aware Curriculum Learning for Heterogeneous Graph Neural Networks
- URL: http://arxiv.org/abs/2402.18875v1
- Date: Thu, 29 Feb 2024 05:44:41 GMT
- Title: Loss-aware Curriculum Learning for Heterogeneous Graph Neural Networks
- Authors: Zhen Hao Wong, Hansi Yang, Xiaoyi Fu, Quanming Yao
- Abstract summary: This paper investigates the application of curriculum learning techniques to improve the performance of Heterogeneous Graph Neural Networks (GNNs)
To better classify the quality of the data, we design a loss-aware training schedule, named LTS, that measures the quality of every nodes of the data.
Our findings demonstrate the efficacy of curriculum learning in enhancing HGNNs capabilities for analyzing complex graph-structured data.
- Score: 30.333265803394998
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heterogeneous Graph Neural Networks (HGNNs) are a class of deep learning
models designed specifically for heterogeneous graphs, which are graphs that
contain different types of nodes and edges. This paper investigates the
application of curriculum learning techniques to improve the performance and
robustness of Heterogeneous Graph Neural Networks (GNNs). To better classify
the quality of the data, we design a loss-aware training schedule, named LTS
that measures the quality of every nodes of the data and incorporate the
training dataset into the model in a progressive manner that increases
difficulty step by step. LTS can be seamlessly integrated into various
frameworks, effectively reducing bias and variance, mitigating the impact of
noisy data, and enhancing overall accuracy. Our findings demonstrate the
efficacy of curriculum learning in enhancing HGNNs capabilities for analyzing
complex graph-structured data. The code is public at https:
//github.com/LARS-research/CLGNN/.
Related papers
- Enhancing Size Generalization in Graph Neural Networks through Disentangled Representation Learning [7.448831299106425]
DISGEN is a model-agnostic framework designed to disentangle size factors from graph representations.
Our empirical results show that DISGEN outperforms the state-of-the-art models by up to 6% on real-world datasets.
arXiv Detail & Related papers (2024-06-07T03:19:24Z) - Ensemble Learning for Graph Neural Networks [28.3650473174488]
Graph Neural Networks (GNNs) have shown success in various fields for learning from graph-structured data.
This paper investigates the application of ensemble learning techniques to improve the performance and robustness of GNNs.
arXiv Detail & Related papers (2023-10-22T03:55:13Z) - Addressing the Impact of Localized Training Data in Graph Neural
Networks [0.0]
Graph Neural Networks (GNNs) have achieved notable success in learning from graph-structured data.
This article aims to assess the impact of training GNNs on localized subsets of the graph.
We propose a regularization method to minimize distributional discrepancies between localized training data and graph inference.
arXiv Detail & Related papers (2023-07-24T11:04:22Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
We develop a principled approach to the problem of graph learning with weak information (GLWI)
We propose D$2$PT, a dual-channel GNN framework that performs long-range information propagation on the input graph with incomplete structure, but also on a global graph that encodes global semantic similarities.
arXiv Detail & Related papers (2023-05-29T04:51:09Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Graph Neural Network with Curriculum Learning for Imbalanced Node
Classification [21.085314408929058]
Graph Neural Network (GNN) is an emerging technique for graph-based learning tasks such as node classification.
In this work, we reveal the vulnerability of GNN to the imbalance of node labels.
We propose a novel graph neural network framework with curriculum learning (GNN-CL) consisting of two modules.
arXiv Detail & Related papers (2022-02-05T10:46:11Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - An Introduction to Robust Graph Convolutional Networks [71.68610791161355]
We propose a novel Robust Graph Convolutional Neural Networks for possible erroneous single-view or multi-view data.
By incorporating an extra layers via Autoencoders into traditional graph convolutional networks, we characterize and handle typical error models explicitly.
arXiv Detail & Related papers (2021-03-27T04:47:59Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
We propose PTDNet, a parameterized topological denoising network, to improve the robustness and generalization performance of Graph Neural Networks (GNNs)
PTDNet prunes task-irrelevant edges by penalizing the number of edges in the sparsified graph with parameterized networks.
We show that PTDNet can improve the performance of GNNs significantly and the performance gain becomes larger for more noisy datasets.
arXiv Detail & Related papers (2020-11-13T18:53:21Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
We propose a graph contrastive learning (GraphCL) framework for learning unsupervised representations of graph data.
We show that our framework can produce graph representations of similar or better generalizability, transferrability, and robustness compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-10-22T20:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.