論文の概要: Spiking Neural Networks -- Part II: Detecting Spatio-Temporal Patterns
- arxiv url: http://arxiv.org/abs/2010.14217v3
- Date: Mon, 26 Apr 2021 17:02:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-02 11:15:14.919007
- Title: Spiking Neural Networks -- Part II: Detecting Spatio-Temporal Patterns
- Title(参考訳): スパイクニューラルネットワーク -その2:時空間パターンの検出
- Authors: Nicolas Skatchkovsky, Hyeryung Jang, Osvaldo Simeone
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、符号化された時間信号で情報を検出するユニークな能力を持つ。
SNNをリカレントニューラルネットワーク(RNN)とみなす支配的アプローチのためのモデルとトレーニングアルゴリズムについてレビューする。
スパイキングニューロンの確率モデルに頼り、勾配推定による局所学習規則の導出を可能にする別のアプローチについて述べる。
- 参考スコア(独自算出の注目度): 38.518936229794214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inspired by the operation of biological brains, Spiking Neural Networks
(SNNs) have the unique ability to detect information encoded in spatio-temporal
patterns of spiking signals. Examples of data types requiring spatio-temporal
processing include logs of time stamps, e.g., of tweets, and outputs of neural
prostheses and neuromorphic sensors. In this paper, the second of a series of
three review papers on SNNs, we first review models and training algorithms for
the dominant approach that considers SNNs as a Recurrent Neural Network (RNN)
and adapt learning rules based on backpropagation through time to the
requirements of SNNs. In order to tackle the non-differentiability of the
spiking mechanism, state-of-the-art solutions use surrogate gradients that
approximate the threshold activation function with a differentiable function.
Then, we describe an alternative approach that relies on probabilistic models
for spiking neurons, allowing the derivation of local learning rules via
stochastic estimates of the gradient. Finally, experiments are provided for
neuromorphic data sets, yielding insights on accuracy and convergence under
different SNN models.
- Abstract(参考訳): 生体脳の操作にインスパイアされたスパイキングニューラルネットワーク(SNN)は、スパイキング信号の時空間パターンに符号化された情報を検出するユニークな能力を持つ。
時空間処理を必要とするデータ型には、例えばツイートのタイムスタンプのログや、神経義肢や神経形センサーの出力などがある。
本稿では,SNNをリカレントニューラルネットワーク(Recurrent Neural Network, RNN)とみなす支配的アプローチのモデルとトレーニングアルゴリズムをまずレビューし,SNNの要件を満たすためのバックプロパゲーションに基づく学習規則を適用する。
スパイキング機構の非微分可能性に取り組むために、最先端の解は、閾値活性化関数を微分可能な関数で近似する代理勾配を用いる。
次に, 勾配の確率的推定による局所学習規則の導出を可能とし, スパイキングニューロンの確率モデルに依存する別のアプローチについて述べる。
最後に、ニューロモルフィックデータセットに対して実験を行い、異なるSNNモデルの下での精度と収束についての洞察を得る。
関連論文リスト
- Stochastic Spiking Neural Networks with First-to-Spike Coding [7.955633422160267]
スパイキングニューラルネットワーク (SNN) は、その生物の楽観性とエネルギー効率で知られている。
本研究では,SNNアーキテクチャにおける新しい計算手法と情報符号化方式の融合について検討する。
提案手法のトレードオフを,精度,推論遅延,スパイク空間性,エネルギー消費,データセットの観点から検討する。
論文 参考訳(メタデータ) (2024-04-26T22:52:23Z) - Topological Representations of Heterogeneous Learning Dynamics of Recurrent Spiking Neural Networks [16.60622265961373]
スパイキングニューラルネットワーク(SNN)は神経科学と人工知能において重要なパラダイムとなっている。
近年,深層ニューラルネットワークのネットワーク表現について研究が進められている。
論文 参考訳(メタデータ) (2024-03-19T05:37:26Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Spiking Neural Networks -- Part I: Detecting Spatial Patterns [38.518936229794214]
Spiking Neural Networks(SNN)は生物学的にインスパイアされた機械学習モデルで、バイナリとスパーススパイキング信号をイベント駆動のオンラインな方法で処理する動的ニューラルモデルに基づいている。
SNNは、学習と推論のためのエネルギー効率の良いコプロセッサとして出現しているニューロモルフィックコンピューティングプラットフォーム上で実装することができる。
論文 参考訳(メタデータ) (2020-10-27T11:37:22Z) - Multi-Sample Online Learning for Probabilistic Spiking Neural Networks [43.8805663900608]
スパイキングニューラルネットワーク(SNN)は、推論と学習のための生物学的脳の効率の一部をキャプチャする。
本稿では,一般化予測最大化(GEM)に基づくオンライン学習ルールを提案する。
標準ニューロモルフィックデータセットにおける構造化された出力記憶と分類実験の結果,ログの類似性,精度,キャリブレーションの点で大きな改善が見られた。
論文 参考訳(メタデータ) (2020-07-23T10:03:58Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Comparing SNNs and RNNs on Neuromorphic Vision Datasets: Similarities
and Differences [36.82069150045153]
スパイキングニューラルネットワーク(SNN)とリカレントニューラルネットワーク(RNN)は、ニューロモルフィックデータに基づいてベンチマークされる。
本研究では,SNNとRNNをニューロモルフィックデータと比較するための系統的研究を行う。
論文 参考訳(メタデータ) (2020-05-02T10:19:37Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。