Unraveling the origin of higher success probabilities in quantum versus
semi-classical annealing
- URL: http://arxiv.org/abs/2010.14256v3
- Date: Mon, 11 Oct 2021 10:41:39 GMT
- Title: Unraveling the origin of higher success probabilities in quantum versus
semi-classical annealing
- Authors: Elias Starchl, Helmut Ritsch
- Abstract summary: We study whether and when a full quantum representation of the dynamics leads to higher probability to end up in the desired ground.
We find strong evidence for the importance of entanglement to end close to the optimal solution.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum annealing aims at finding optimal solutions to complex optimization
problems using a suitable quantum many body Hamiltonian encoding the solution
in its ground state. To find the solution one typically evolves the ground
state of a soluble initial Hamiltonian adiabatically to the ground state of the
designated final Hamiltonian. Here we explore whether and when a full quantum
representation of the dynamics leads to higher probability to end up in the
desired ground when compared to a classical mean field approximation. As
simple, nontrivial example we target the ground state of interacting bosons
trapped in a tight binding lattice with small local defect by turning on long
range interactions. Already two atoms in four sites interacting via two cavity
modes prove complex enough to exhibit significant differences between the full
quantum model and a mean field approximation for the cavity fields mediating
the interactions. We find a large parameter region of highly successful quantum
annealing where the semi-classical approach largely fails. Here we see strong
evidence for the importance of entanglement to end close to the optimal
solution. The quantum model also reduces the minimal time for a high target
occupation probability. In contrast to naive expectations that enlarging the
Hilbert space is beneficial, different numerical cut-offs of the Hilbert space
reveal an improved performance for lower cut-offs, i.e. an nonphysical reduced
Hilbert space, for short simulation times. Hence a less faithful representation
of the full quantum dynamics sometimes creates a higher numerical success
probability in shorter time. However, a sufficiently high cut-off proves
relevant to obtain near perfect fidelity for long simulations times in a single
run. Overall our results exhibit a clear improvement based on a quantum model
versus simulations based on a classical field approximation.
Related papers
- Optimizing random local Hamiltonians by dissipation [44.99833362998488]
We prove that a simplified quantum Gibbs sampling algorithm achieves a $Omega(frac1k)$-fraction approximation of the optimum.
Our results suggest that finding low-energy states for sparsified (quasi)local spin and fermionic models is quantumly easy but classically nontrivial.
arXiv Detail & Related papers (2024-11-04T20:21:16Z) - From Heisenberg to Hubbard: An initial state for the shallow quantum
simulation of correlated electrons [0.0]
We propose a three-step deterministic quantum routine to prepare an educated guess of the ground state of the Fermi-Hubbard model.
First, the ground state of the Heisenberg model is suitable for near-term quantum hardware.
Second, a general method is devised to convert a multi-spin-$frac12$ wave function into its fermionic version.
arXiv Detail & Related papers (2023-10-25T17:05:50Z) - Revealing quantum effects in bosonic Josephson junctions: a
multi-configuration atomic coherent states approach [1.450405446885067]
We show that quantum effects beyond the mean-field approximation are easily uncovered.
The number of variational trajectories needed for good agreement with full quantum results is orders of magnitude smaller than in the semiclassical case.
arXiv Detail & Related papers (2023-02-10T16:10:20Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Orbital Expansion Variational Quantum Eigensolver: Enabling Efficient
Simulation of Molecules with Shallow Quantum Circuit [0.5541644538483947]
Variational Quantum Eigensolver (VQE) is a promising method to study ground state properties in quantum chemistry, materials science, and condensed physics.
Here, we propose an Orbital Expansion VQE(OE-VQE) framework to construct an efficient convergence path.
The path starts from a highly correlated compact active space and rapidly expands and converges to the ground state, enabling ground states with much shallower quantum circuits.
arXiv Detail & Related papers (2022-10-13T10:47:01Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Mesoscopic quantum superposition states of weakly-coupled matter-wave
solitons [58.720142291102135]
We establish quantum features of an atomic soliton Josephson junction (SJJ) device.
We show that the SJJ-model in quantum domain exhibits unusual features due to its effective nonlinear strength proportional to the square of total particle number.
We have shown that the obtained quantum state is more resistant to few particle losses from the condensates if tiny components of entangled Fock states are present.
arXiv Detail & Related papers (2020-11-26T09:26:19Z) - Variational Quantum Eigensolver for Frustrated Quantum Systems [0.0]
A variational quantum eigensolver, or VQE, is designed to determine a global minimum in an energy landscape specified by a quantum Hamiltonian.
Here we consider the performance of the VQE technique for a Hubbard-like model describing a one-dimensional chain of fermions.
We also study the barren plateau phenomenon for the Hamiltonian in question and find that the severity of this effect depends on the encoding of fermions to qubits.
arXiv Detail & Related papers (2020-05-01T18:00:01Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.