From Heisenberg to Hubbard: An initial state for the shallow quantum
simulation of correlated electrons
- URL: http://arxiv.org/abs/2310.16775v1
- Date: Wed, 25 Oct 2023 17:05:50 GMT
- Title: From Heisenberg to Hubbard: An initial state for the shallow quantum
simulation of correlated electrons
- Authors: Bruno Murta and Joaqu\'in Fern\'andez-Rossier
- Abstract summary: We propose a three-step deterministic quantum routine to prepare an educated guess of the ground state of the Fermi-Hubbard model.
First, the ground state of the Heisenberg model is suitable for near-term quantum hardware.
Second, a general method is devised to convert a multi-spin-$frac12$ wave function into its fermionic version.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The widespread use of the noninteracting ground state as the initial state
for the digital quantum simulation of the Fermi-Hubbard model is largely due to
the scarcity of alternative easy-to-prepare approximations to the exact ground
state in the literature. Exploiting the fact that the spin-$\frac{1}{2}$
Heisenberg model is the effective low-energy theory of the Fermi-Hubbard model
at half-filling in the strongly interacting limit, here we propose a three-step
deterministic quantum routine to prepare an educated guess of the ground state
of the Fermi-Hubbard model through a shallow circuit suitable for near-term
quantum hardware. First, the ground state of the Heisenberg model is
initialized via a hybrid variational method using an ansatz that explores only
the correct symmetry subspace. Second, a general method is devised to convert a
multi-spin-$\frac{1}{2}$ wave function into its fermionic version. Third,
taking inspiration from the Baeriswyl ansatz, a constant-depth single-parameter
layer that adds doublon-holon pairs is applied to this fermionic state.
Numerical simulations on chains and ladders with up to 12 sites confirm the
improvement over the noninteracting ground state of the overlap with the exact
ground state for the intermediate values of the interaction strength at which
quantum simulation is bound to be most relevant.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Cost of Locally Approximating High-Dimensional Ground States of Contextual Quantum Models [1.5844265436419382]
Contextuality, one of the strongest forms of quantum correlations, delineates the quantum world and the classical one.
Some quantum models, in the form of infinite one-dimensional translation-invariant Hamiltonians, have the lowest ground state energy density allowed in quantum physics.
We develop a universal set of permutation-symmetry preserving qubit-based gates, using them as an ansatz to simulate parameterized quantum circuits designed for qutrits.
arXiv Detail & Related papers (2024-05-08T08:35:31Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Assessment of the variational quantum eigensolver: application to the
Heisenberg model [0.0]
We present and analyze large-scale simulation results of a hybrid quantum-classical variational method to calculate the ground state energy of the anti-ferromagnetic Heisenberg model.
We predict that a fully functional quantum computer with 100 qubits can calculate the ground state energy with a relatively small error.
arXiv Detail & Related papers (2022-01-13T16:49:04Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Effective Theory for the Measurement-Induced Phase Transition of Dirac
Fermions [0.0]
A wave function exposed to measurements undergoes pure state dynamics.
For many-particle systems, the competition of these different elements of dynamics can give rise to a scenario similar to quantum phase transitions.
A key finding is that this field theory decouples into one set of degrees of freedom that heats up indefinitely.
arXiv Detail & Related papers (2021-02-16T19:00:00Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Roadmap for quantum simulation of the fractional quantum Hall effect [0.0]
A major motivation for building a quantum computer is that it provides a tool to efficiently simulate strongly correlated quantum systems.
In this work, we present a detailed roadmap on how to simulate a two-dimensional electron gas---cooled to absolute zero and pierced by a strong magnetic field---on a quantum computer.
arXiv Detail & Related papers (2020-03-05T10:17:21Z) - An application benchmark for fermionic quantum simulations [0.0]
It is expected that the simulation of correlated fermions in chemistry and material science will be one of the first practical applications of quantum processors.
We propose using the one-dimensional Fermi-Hubbard model as an application benchmark for variational quantum simulations on near-term quantum devices.
arXiv Detail & Related papers (2020-03-04T02:23:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.