Examining Deep Learning Models with Multiple Data Sources for COVID-19
Forecasting
- URL: http://arxiv.org/abs/2010.14491v2
- Date: Mon, 23 Nov 2020 22:46:40 GMT
- Title: Examining Deep Learning Models with Multiple Data Sources for COVID-19
Forecasting
- Authors: Lijing Wang, Aniruddha Adiga, Srinivasan Venkatramanan, Jiangzhuo
Chen, Bryan Lewis, Madhav Marathe
- Abstract summary: We design and analysis of deep learning-based models for COVID-19 forecasting.
We consider multiple sources such as COVID-19 confirmed and death case count data and testing data for better predictions.
We propose clustering-based training for high-temporal forecasting.
- Score: 10.052302234274256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The COVID-19 pandemic represents the most significant public health disaster
since the 1918 influenza pandemic. During pandemics such as COVID-19, timely
and reliable spatio-temporal forecasting of epidemic dynamics is crucial. Deep
learning-based time series models for forecasting have recently gained
popularity and have been successfully used for epidemic forecasting. Here we
focus on the design and analysis of deep learning-based models for COVID-19
forecasting. We implement multiple recurrent neural network-based deep learning
models and combine them using the stacking ensemble technique. In order to
incorporate the effects of multiple factors in COVID-19 spread, we consider
multiple sources such as COVID-19 confirmed and death case count data and
testing data for better predictions. To overcome the sparsity of training data
and to address the dynamic correlation of the disease, we propose
clustering-based training for high-resolution forecasting. The methods help us
to identify the similar trends of certain groups of regions due to various
spatio-temporal effects. We examine the proposed method for forecasting weekly
COVID-19 new confirmed cases at county-, state-, and country-level. A
comprehensive comparison between different time series models in COVID-19
context is conducted and analyzed. The results show that simple deep learning
models can achieve comparable or better performance when compared with more
complicated models. We are currently integrating our methods as a part of our
weekly forecasts that we provide state and federal authorities.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Forecast reconciliation for vaccine supply chain optimization [61.13962963550403]
Vaccine supply chain optimization can benefit from hierarchical time series forecasting.
Forecasts of different hierarchy levels become incoherent when higher levels do not match the sum of the lower levels forecasts.
We tackle the vaccine sale forecasting problem by modeling sales data from GSK between 2010 and 2021 as a hierarchical time series.
arXiv Detail & Related papers (2023-05-02T14:34:34Z) - Strict baselines for Covid-19 forecasting and ML perspective for USA and
Russia [105.54048699217668]
Covid-19 allows researchers to gather datasets accumulated over 2 years and to use them in predictive analysis.
We present the results of a consistent comparative study of different types of methods for predicting the dynamics of the spread of Covid-19 based on regional data for two countries: the United States and Russia.
arXiv Detail & Related papers (2022-07-15T18:21:36Z) - Deep diffusion-based forecasting of COVID-19 by incorporating
network-level mobility information [22.60685417365995]
We develop a deep learning-based timeseries model for probabilistic forecasting called Auto-regressive Mixed Density Diffusion Dynamic Network(ARM3Dnet)
We show that our model can outperform both traditional statistical and deep learning models in forecasting the number of Covid-19 deaths and cases at the county level in the United States.
arXiv Detail & Related papers (2021-11-09T15:18:03Z) - A spatiotemporal machine learning approach to forecasting COVID-19
incidence at the county level in the United States [2.9822184411723645]
We present COVID-LSTM, a data-driven model based on a Long Short-term memory architecture for forecasting COVID-19 incidence at the county-level in the US.
We use the weekly number of new cases as temporal input, and hand-engineered spatial features from Facebook to capture the spread of the disease in time and space.
Over the 4-week forecast horizon, our model is on average 50 cases per county more accurate than the COVIDhub-ensemble.
arXiv Detail & Related papers (2021-09-24T17:40:08Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - Inter-Series Attention Model for COVID-19 Forecasting [23.58411106491221]
We develop a new neural forecasting model, called Attention Crossing Time Series (textbfACTS), that makes forecasts via comparing patterns across time series obtained from multiple regions.
Among 13 out of 18 testings including forecasting newly confirmed cases, hospitalizations and deaths, textbfACTS outperforms all the leading COVID-19 forecasters highlighted by CDC.
arXiv Detail & Related papers (2020-10-25T00:11:49Z) - DeepCOVIDNet: An Interpretable Deep Learning Model for Predictive
Surveillance of COVID-19 Using Heterogeneous Features and their Interactions [2.30238915794052]
We propose a deep learning model to forecast the range of increase in COVID-19 infected cases in future days.
Using data collected from various sources, we estimate the range of increase in infected cases seven days into the future for all U.S. counties.
arXiv Detail & Related papers (2020-07-31T23:37:38Z) - Deep Learning Models for Early Detection and Prediction of the spread of
Novel Coronavirus (COVID-19) [4.213555705835109]
SARS-CoV2 is continuing to spread globally and has become a pandemic.
There is an urgent need to develop machine learning techniques to predict the spread of COVID-19.
arXiv Detail & Related papers (2020-07-29T10:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.