Inter-Series Attention Model for COVID-19 Forecasting
- URL: http://arxiv.org/abs/2010.13006v2
- Date: Mon, 5 Apr 2021 20:53:55 GMT
- Title: Inter-Series Attention Model for COVID-19 Forecasting
- Authors: Xiaoyong Jin, Yu-Xiang Wang, Xifeng Yan
- Abstract summary: We develop a new neural forecasting model, called Attention Crossing Time Series (textbfACTS), that makes forecasts via comparing patterns across time series obtained from multiple regions.
Among 13 out of 18 testings including forecasting newly confirmed cases, hospitalizations and deaths, textbfACTS outperforms all the leading COVID-19 forecasters highlighted by CDC.
- Score: 23.58411106491221
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: COVID-19 pandemic has an unprecedented impact all over the world since early
2020. During this public health crisis, reliable forecasting of the disease
becomes critical for resource allocation and administrative planning. The
results from compartmental models such as SIR and SEIR are popularly referred
by CDC and news media. With more and more COVID-19 data becoming available, we
examine the following question: Can a direct data-driven approach without
modeling the disease spreading dynamics outperform the well referred
compartmental models and their variants? In this paper, we show the
possibility. It is observed that as COVID-19 spreads at different speed and
scale in different geographic regions, it is highly likely that similar
progression patterns are shared among these regions within different time
periods. This intuition lead us to develop a new neural forecasting model,
called Attention Crossing Time Series (\textbf{ACTS}), that makes forecasts via
comparing patterns across time series obtained from multiple regions. The
attention mechanism originally developed for natural language processing can be
leveraged and generalized to materialize this idea. Among 13 out of 18 testings
including forecasting newly confirmed cases, hospitalizations and deaths,
\textbf{ACTS} outperforms all the leading COVID-19 forecasters highlighted by
CDC.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - A spatiotemporal machine learning approach to forecasting COVID-19
incidence at the county level in the United States [2.9822184411723645]
We present COVID-LSTM, a data-driven model based on a Long Short-term memory architecture for forecasting COVID-19 incidence at the county-level in the US.
We use the weekly number of new cases as temporal input, and hand-engineered spatial features from Facebook to capture the spread of the disease in time and space.
Over the 4-week forecast horizon, our model is on average 50 cases per county more accurate than the COVIDhub-ensemble.
arXiv Detail & Related papers (2021-09-24T17:40:08Z) - Temporal Deep Learning Architecture for Prediction of COVID-19 Cases in
India [1.7969777786551424]
Recently the new machine learning approaches are being used to understand the dynamic trend of COVID-19 spread.
We designed the recurrent and convolutional neural network models: vanilla LSTM, stacked LSTM, ED-LSTM, Bi-LSTM, CNN, and hybrid CNN+LSTM model.
The results show that the stacked LSTM and hybrid CNN+LSTM models perform best relative to other models.
arXiv Detail & Related papers (2021-08-31T13:28:51Z) - Early Detection of COVID-19 Hotspots Using Spatio-Temporal Data [66.70036251870988]
The Centers for Disease Control and Prevention (CDC) has worked with other federal agencies to identify counties with increasing coronavirus 2019 (CO-19) incidence (hotspots)
This paper presents a sparse model for early detection of COVID-19 hotspots (at the county level) in the United States.
Deep neural networks are introduced to enhance the model's representative power while still enjoying the interpretability of the kernel.
arXiv Detail & Related papers (2021-05-31T19:28:17Z) - Modeling the geospatial evolution of COVID-19 using spatio-temporal
convolutional sequence-to-sequence neural networks [48.7576911714538]
Portugal was the country in the world with the largest incidence rate, with 14-days incidence rates per 100,000 inhabitants in excess of 1000.
Despite its importance, accurate prediction of the geospatial evolution of COVID-19 remains a challenge.
arXiv Detail & Related papers (2021-05-06T15:24:00Z) - Approximate Bayesian Computation for an Explicit-Duration Hidden Markov
Model of COVID-19 Hospital Trajectories [55.786207368853084]
We address the problem of modeling constrained hospital resources in the midst of the COVID-19 pandemic.
For broad applicability, we focus on the common yet challenging scenario where patient-level data for a region of interest are not available.
We propose an aggregate count explicit-duration hidden Markov model, nicknamed the ACED-HMM, with an interpretable, compact parameterization.
arXiv Detail & Related papers (2021-04-28T15:32:42Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - Examining Deep Learning Models with Multiple Data Sources for COVID-19
Forecasting [10.052302234274256]
We design and analysis of deep learning-based models for COVID-19 forecasting.
We consider multiple sources such as COVID-19 confirmed and death case count data and testing data for better predictions.
We propose clustering-based training for high-temporal forecasting.
arXiv Detail & Related papers (2020-10-27T17:52:02Z) - A Recurrent Neural Network and Differential Equation Based
Spatiotemporal Infectious Disease Model with Application to COVID-19 [3.464871689508835]
We develop an integrated disease model based on epidemic differential equations (SIR) and recurrent neural networks (RNN)
We trained and tested our model on CO-19 data in Italy, and show that it out-performs existing temporal models (fully connected NN, SIR, ARIMA) in 1-day, 3-day, and 1-week ahead forecasting.
arXiv Detail & Related papers (2020-07-14T07:04:57Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
We train on Italy's early COVID-19 outbreak through Twitter and transfer to several other countries.
Our experiments show strong results with up to 0.85 Spearman correlation in cross-country predictions.
arXiv Detail & Related papers (2020-06-05T02:04:25Z) - Learning to Forecast and Forecasting to Learn from the COVID-19 Pandemic [10.796851110372593]
We propose a heterogeneous infection rate model with human mobility for epidemic modeling.
By linearizing the model and using weighted least squares, our model is able to quickly adapt to changing trends.
We show that during the earlier part of the epidemic, using travel data increases the predictions.
arXiv Detail & Related papers (2020-04-23T07:25:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.