論文の概要: Quantified Facial Temporal-Expressiveness Dynamics for Affect Analysis
- arxiv url: http://arxiv.org/abs/2010.14705v1
- Date: Wed, 28 Oct 2020 02:22:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-02 05:30:55.333262
- Title: Quantified Facial Temporal-Expressiveness Dynamics for Affect Analysis
- Title(参考訳): 感情分析のための顔面時空間表現動態の定量化
- Authors: Md Taufeeq Uddin, Shaun Canavan
- Abstract要約: 本研究では,人間の顔の表現力を定量化するために,顔の時間的表現性ダイナミクス(TED)を提案する。
TEDは、構造化されていない視覚データの要約や、自動感情認識モデルからの期待や解釈など、高度なタスクに利用できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantification of visual affect data (e.g. face images) is essential to
build and monitor automated affect modeling systems efficiently. Considering
this, this work proposes quantified facial Temporal-expressiveness Dynamics
(TED) to quantify the expressiveness of human faces. The proposed algorithm
leverages multimodal facial features by incorporating static and dynamic
information to enable accurate measurements of facial expressiveness. We show
that TED can be used for high-level tasks such as summarization of unstructured
visual data, and expectation from and interpretation of automated affect
recognition models. To evaluate the positive impact of using TED, a case study
was conducted on spontaneous pain using the UNBC-McMaster spontaneous shoulder
pain dataset. Experimental results show the efficacy of using TED for
quantified affect analysis.
- Abstract(参考訳): 視覚影響データ(例えば顔画像)の定量化は、自動影響モデリングシステムの構築と監視を効率的に行うのに不可欠である。
そこで本研究では,人間の顔の表現力を定量化するために,顔の時間的表現性ダイナミクス(TED)を提案する。
提案アルゴリズムは,静的および動的情報を組み込むことで,顔の表情の正確な測定を可能にする。
tedは非構造化視覚データの要約や自動的感情認識モデルの期待や解釈といったハイレベルなタスクに使用できることを示す。
UNBC-McMaster 自発肩痛データセットを用いて, 自発性痛に対するTEDの有用性について検討した。
実験の結果, 定量的影響分析におけるTEDの有用性が示された。
関連論文リスト
- CFCPalsy: Facial Image Synthesis with Cross-Fusion Cycle Diffusion Model for Facial Paralysis Individuals [3.2688425993442696]
本研究の目的は、このギャップに対処するために、高品質な顔面麻痺データセットを合成することである。
拡散モデルに基づく新しいクロスフュージョンサイクルPalsy式生成モデル(PalsyCFC)を提案する。
顔面麻痺の一般的な臨床データセットについて, 定性的, 定量的に検討した。
論文 参考訳(メタデータ) (2024-09-11T13:46:35Z) - UniLearn: Enhancing Dynamic Facial Expression Recognition through Unified Pre-Training and Fine-Tuning on Images and Videos [83.48170683672427]
UniLearnは、静的表情認識データを統合してDFERタスクを強化する統一学習パラダイムである。
UniLearnは、FERV39K、MAFW、DFEWのベンチマークにおいて、それぞれ53.65%、58.44%、76.68%の重み付き平均リコール(WAR)で常に最先端のパフォーマンスを保っている。
論文 参考訳(メタデータ) (2024-09-10T01:57:57Z) - BigSmall: Efficient Multi-Task Learning for Disparate Spatial and
Temporal Physiological Measurements [28.573472322978507]
生理・行動計測のための効率的なアーキテクチャであるBigSmallを提案する。
本稿では,時間シフトモジュールをラップしたマルチブランチネットワークを提案する。
論文 参考訳(メタデータ) (2023-03-21T03:41:57Z) - Dataset Bias in Human Activity Recognition [57.91018542715725]
このコントリビューションは、トレーニングデータを統計的にキュレートし、人間の身体的特性がHARのパフォーマンスにどの程度影響するかを評価する。
時系列HARのセンサ,アクティビティ,記録の異なる2つのHARデータセット上で,最先端の畳み込みニューラルネットワークの性能を評価する。
論文 参考訳(メタデータ) (2023-01-19T12:33:50Z) - CIAO! A Contrastive Adaptation Mechanism for Non-Universal Facial
Expression Recognition [80.07590100872548]
本稿では、顔エンコーダの最後の層に異なるデータセットの特定の感情特性を適応させるメカニズムであるContrastive Inhibitory Adaptati On(CIAO)を提案する。
CIAOは、非常にユニークな感情表現を持つ6つの異なるデータセットに対して、表情認識性能が改善されている。
論文 参考訳(メタデータ) (2022-08-10T15:46:05Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Quantified Facial Expressiveness for Affective Behavior Analytics [0.0]
本論文では,マルチモーダル顔特徴量を用いた境界付き連続表現度スコアを用いた顔表現度を定量化するアルゴリズムを提案する。
提案アルゴリズムは,表現の離散性の観点から表現性を計算し,顔の行動追跡や主観性といったタスクを文脈で実行することができる。
論文 参考訳(メタデータ) (2021-10-05T00:21:33Z) - Modeling Dynamics of Facial Behavior for Mental Health Assessment [4.130361751085622]
自然言語処理における単語表現に使用されるアルゴリズムを用いて,表情の動的表現の可能性を検討する。
顔クラスタの埋め込みを学習するために,Global Vector representation (GloVe)アルゴリズムを適用する前に,5.3Mフレームの時間的表情の大規模なデータセット上でクラスタリングを行う。
統合失調症の症状重症度推定と抑うつ回帰という2つの下流課題における学習表現の有用性を評価した。
論文 参考訳(メタデータ) (2021-08-23T05:08:45Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
糖尿病網膜症における訓練方法の違いによる影響を比較検討した。
本稿では,定量的性能,学習した特徴表現の統計,解釈可能性,画像歪みに対する頑健性など,さまざまな側面について検討する。
以上の結果から,ImageNet事前学習モデルでは,画像歪みに対する性能,一般化,堅牢性が著しく向上していることが示唆された。
論文 参考訳(メタデータ) (2021-06-25T08:32:45Z) - A Multi-term and Multi-task Analyzing Framework for Affective Analysis
in-the-wild [0.2216657815393579]
本稿では,ABAW(Affective Behavior Analysis in-the-Wild)2020 Contestに提出された感情認識手法を紹介する。
感情行動には独自の時間枠を持つ観測可能な多くの特徴があるため、複数の最適化された時間窓を導入しました。
時間ごとの感情認識モデルを作成し、これらのモデルをまとめました。
論文 参考訳(メタデータ) (2020-09-29T09:24:29Z) - Unsupervised Learning Facial Parameter Regressor for Action Unit
Intensity Estimation via Differentiable Renderer [51.926868759681014]
骨駆動型顔モデル(BDFM)に基づいて,異なる視点で顔パラメータを予測する枠組みを提案する。
提案するフレームワークは,特徴抽出器,ジェネレータ,顔パラメータ回帰器から構成される。
論文 参考訳(メタデータ) (2020-08-20T09:49:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。