論文の概要: DisenE: Disentangling Knowledge Graph Embeddings
- arxiv url: http://arxiv.org/abs/2010.14730v2
- Date: Thu, 12 Nov 2020 12:53:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-02 04:36:54.393527
- Title: DisenE: Disentangling Knowledge Graph Embeddings
- Title(参考訳): DisenE: 知識グラフの埋め込みを遠ざける
- Authors: Xiaoyu Kou, Yankai Lin, Yuntao Li, Jiahao Xu, Peng Li, Jie Zhou, Yan
Zhang
- Abstract要約: DisenEは、非絡み合いの知識グラフの埋め込みを学習するためのエンドツーエンドフレームワークである。
我々は,モデルが与えられた関係に応じて,エンティティ埋め込みの関連コンポーネントに明示的に焦点を絞ることができるように,注意に基づく機構を導入する。
- 参考スコア(独自算出の注目度): 33.169388832519
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge graph embedding (KGE), aiming to embed entities and relations into
low-dimensional vectors, has attracted wide attention recently. However, the
existing research is mainly based on the black-box neural models, which makes
it difficult to interpret the learned representation. In this paper, we
introduce DisenE, an end-to-end framework to learn disentangled knowledge graph
embeddings. Specially, we introduce an attention-based mechanism that enables
the model to explicitly focus on relevant components of entity embeddings
according to a given relation. Furthermore, we introduce two novel regularizers
to encourage each component of the entity representation to independently
reflect an isolated semantic aspect. Experimental results demonstrate that our
proposed DisenE investigates a perspective to address the interpretability of
KGE and is proved to be an effective way to improve the performance of link
prediction tasks.
- Abstract(参考訳): 低次元ベクトルに実体と関係を埋め込むことを目的とした知識グラフ埋め込み(KGE)が近年注目を集めている。
しかし、既存の研究は主にブラックボックスニューラルモデルに基づいているため、学習された表現を解釈することが困難である。
本稿では,エンド・ツー・エンドの知識グラフ埋め込み学習フレームワークであるdiseneを紹介する。
特に、モデルが与えられた関係に従ってエンティティ埋め込みの関連コンポーネントに明示的に焦点を合わせられるように注意に基づくメカニズムを導入する。
さらに、2つの新しい正規化器を導入し、エンティティ表現の各コンポーネントが独立した意味的側面を独立に反映するように促す。
実験の結果,提案したDisenEは,KGEの解釈可能性に対処する視点を考察し,リンク予測タスクの性能向上に有効な方法であることが確認された。
関連論文リスト
- Explainable Representations for Relation Prediction in Knowledge Graphs [0.0]
本稿では、知識グラフにおける関係予測を支援するための説明可能な表現のための新しいアプローチであるSEEKを提案する。
それは、エンティティと各サブグラフの学習表現の間の関連する共有意味的側面を識別することに基づいている。
本研究では,タンパク質間相互作用予測と遺伝子発現関連予測の2つの実世界の関係予測タスクについてSEEKを評価した。
論文 参考訳(メタデータ) (2023-06-22T06:18:40Z) - Message Intercommunication for Inductive Relation Reasoning [49.731293143079455]
我々はMINESと呼ばれる新しい帰納的関係推論モデルを開発した。
隣り合う部分グラフにメッセージ通信機構を導入する。
我々の実験は、MINESが既存の最先端モデルより優れていることを示している。
論文 参考訳(メタデータ) (2023-05-23T13:51:46Z) - Knowledge Graph Completion with Counterfactual Augmentation [23.20561746976504]
我々は,「実体の近傍が観察と異なるものになったら,その関係は存在するのか?」という反事実的疑問を提起する。
知識グラフ上の因果モデルを慎重に設計し,その疑問に答える反事実関係を生成する。
我々は、KGs上のGNNベースのフレームワークと作成した対物関係を組み込んで、エンティティペア表現の学習を増強する。
論文 参考訳(メタデータ) (2023-02-25T14:08:15Z) - Learning Attention-based Representations from Multiple Patterns for
Relation Prediction in Knowledge Graphs [2.4028383570062606]
AEMPは、エンティティのコンテキスト情報を取得することによって、コンテキスト化された表現を学習するための新しいモデルである。
AEMPは、最先端の関係予測手法よりも優れるか、競合する。
論文 参考訳(メタデータ) (2022-06-07T10:53:35Z) - MINER: Improving Out-of-Vocabulary Named Entity Recognition from an
Information Theoretic Perspective [57.19660234992812]
NERモデルは標準のNERベンチマークで有望な性能を達成した。
近年の研究では、従来のアプローチはエンティティ参照情報に過度に依存し、OoV(out-of-vocabulary)エンティティ認識の性能が劣っていることが示されている。
我々は、情報理論の観点からこの問題を改善するための新しいNER学習フレームワークであるMINERを提案する。
論文 参考訳(メタデータ) (2022-04-09T05:18:20Z) - Jointly Learning Knowledge Embedding and Neighborhood Consensus with
Relational Knowledge Distillation for Entity Alignment [9.701081498310165]
エンティティアライメントは、異なる知識グラフから異種知識を統合することを目的としています。
近年の研究では、知識グラフを初めて学習し、エンティティアライメントを実行することで、埋め込みに基づく手法が採用されている。
本稿では,知識蒸留機能を備えたグラフ畳み込みネットワーク(GCN)モデルを提案する。
論文 参考訳(メタデータ) (2022-01-25T02:47:14Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
本稿では,知識グラフ拡張ネットワーク(KGAN)を提案する。
KGANは感情の特徴表現を、文脈、構文、知識に基づく複数の視点から捉えている。
3つの人気のあるABSAベンチマークの実験は、我々のKGANの有効性と堅牢性を示している。
論文 参考訳(メタデータ) (2022-01-13T08:25:53Z) - RelWalk A Latent Variable Model Approach to Knowledge Graph Embedding [50.010601631982425]
本稿では,単語埋め込みのランダムウォークモデル(Arora et al., 2016a)を知識グラフ埋め込み(KGE)に拡張する。
二つの実体 h (head) と t (tail) の間の関係 R の強さを評価するスコア関数を導出する。
理論的解析によって動機付けられた学習目標を提案し,知識グラフからKGEを学習する。
論文 参考訳(メタデータ) (2021-01-25T13:31:29Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。