論文の概要: Multimodal End-to-End Learning for Autonomous Steering in Adverse Road
and Weather Conditions
- arxiv url: http://arxiv.org/abs/2010.14924v2
- Date: Tue, 29 Jun 2021 11:45:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-02 05:28:24.385996
- Title: Multimodal End-to-End Learning for Autonomous Steering in Adverse Road
and Weather Conditions
- Title(参考訳): 道路・気象条件における自律的ステアリングのためのマルチモーダルエンドツーエンド学習
- Authors: Jyri Maanp\"a\"a, Josef Taher, Petri Manninen, Leo Pakola, Iaroslav
Melekhov and Juha Hyypp\"a
- Abstract要約: 自動ステアリングにおけるエンド・ツー・エンドの学習に関するこれまでの研究を,マルチモーダルデータを用いた有害な実生活環境での運用に拡張する。
道路および気象条件下で28時間の運転データを収集し,車両のハンドル角度を予測するために畳み込みニューラルネットワークを訓練した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous driving is challenging in adverse road and weather conditions in
which there might not be lane lines, the road might be covered in snow and the
visibility might be poor. We extend the previous work on end-to-end learning
for autonomous steering to operate in these adverse real-life conditions with
multimodal data. We collected 28 hours of driving data in several road and
weather conditions and trained convolutional neural networks to predict the car
steering wheel angle from front-facing color camera images and lidar range and
reflectance data. We compared the CNN model performances based on the different
modalities and our results show that the lidar modality improves the
performances of different multimodal sensor-fusion models. We also performed
on-road tests with different models and they support this observation.
- Abstract(参考訳): 自動運転車は、車線が存在しない、道路が雪に覆われ、視界が悪くなるような悪路や天候条件では困難である。
マルチモーダルデータを用いた実生活の悪条件下での自律的な操舵のためのエンド・ツー・エンド学習に関する先行研究を拡張した。
道路・気象条件下で28時間の運転データを収集し,前向きカラーカメラ画像とライダー範囲と反射率データから車両のハンドル角度を予測するために畳み込みニューラルネットワークを訓練した。
我々は,cnnモデルの性能を異なるモダリティに基づいて比較し,lidarモダリティが異なるマルチモーダルセンサ・フュージョンモデルの性能を向上させることを示した。
また、異なるモデルでロードテストを行い、この観察を支援しました。
関連論文リスト
- NiteDR: Nighttime Image De-Raining with Cross-View Sensor Cooperative Learning for Dynamic Driving Scenes [49.92839157944134]
夜間の運転シーンでは、不十分で不均一な照明が暗闇の中でシーンを遮蔽し、画質と可視性が低下する。
雨天時の運転シーンに適した画像デライニング・フレームワークを開発した。
雨の人工物を取り除き、風景表現を豊かにし、有用な情報を復元することを目的としている。
論文 参考訳(メタデータ) (2024-02-28T09:02:33Z) - Street-View Image Generation from a Bird's-Eye View Layout [95.36869800896335]
近年,Bird's-Eye View (BEV) の知覚が注目されている。
自動運転のためのデータ駆動シミュレーションは、最近の研究の焦点となっている。
本稿では,現実的かつ空間的に一貫した周辺画像を合成する条件生成モデルであるBEVGenを提案する。
論文 参考訳(メタデータ) (2023-01-11T18:39:34Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
本稿では,車間認識を用いたエンドツーエンド学習モデルであるCOOPERNAUTを紹介する。
われわれのAutoCastSim実験は、我々の協調知覚駆動モデルが平均成功率を40%向上させることを示唆している。
論文 参考訳(メタデータ) (2022-05-04T17:55:12Z) - Vision in adverse weather: Augmentation using CycleGANs with various
object detectors for robust perception in autonomous racing [70.16043883381677]
自律レースでは、天気は突然変化し、認識が著しく低下し、非効率な操作が引き起こされる。
悪天候の検知を改善するために、ディープラーニングベースのモデルは通常、そのような状況下でキャプチャされた広範なデータセットを必要とする。
本稿では,5つの最先端検出器のうち4つの性能向上を図るために,自動レース(CycleGANを用いた)における合成悪条件データセットを用いた手法を提案する。
論文 参考訳(メタデータ) (2022-01-10T10:02:40Z) - Vision-Guided Forecasting -- Visual Context for Multi-Horizon Time
Series Forecasting [0.6947442090579469]
2つのモードを融合させて車両状態のマルチ水平予測に取り組む。
我々は,視覚的特徴抽出のための3次元畳み込みと,速度と操舵角度トレースからの特徴抽出のための1次元畳み込みの設計と実験を行った。
我々は,車両の状態を様々な地平線に予測でき,運転状態推定のタスクにおいて,現在の最先端結果よりも優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2021-07-27T08:52:40Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
画像表現とLiDAR表現を注目で統合する,新しいマルチモードフュージョントランスフォーマであるTransFuserを提案する。
本手法は, 衝突を76%低減しつつ, 最先端駆動性能を実現する。
論文 参考訳(メタデータ) (2021-04-19T11:48:13Z) - DAWN: Vehicle Detection in Adverse Weather Nature Dataset [4.09920839425892]
本研究では,DAWNと呼ばれる各種気象条件下で収集した実世界の画像からなる新しいデータセットを提案する。
このデータセットは、実際の交通環境から1000枚の画像を集め、霧、雪、雨、砂嵐の4つの天候条件に分けられる。
このデータは,車両検知システムの性能に及ぼす悪天候の影響の解明に有効である。
論文 参考訳(メタデータ) (2020-08-12T15:48:49Z) - Probabilistic End-to-End Vehicle Navigation in Complex Dynamic
Environments with Multimodal Sensor Fusion [16.018962965273495]
全日と全天候のナビゲーションは、自動運転にとって重要な機能である。
本稿では,カメラ,ライダー,レーダからの情報を利用して,触覚能力を備えた確率的運転モデルを提案する。
その結果,提案モデルがベースラインを上回り,目に見えない環境での優れた一般化性能を実現することが示唆された。
論文 参考訳(メタデータ) (2020-05-05T03:48:10Z) - VTGNet: A Vision-based Trajectory Generation Network for Autonomous
Vehicles in Urban Environments [26.558394047144006]
模倣学習に基づく不確実性を考慮した終端軌道生成手法を開発した。
様々な気象条件や照明条件下では,ネットワークは異なる都市環境下で確実にトラジェクトリを生成することができる。
提案手法は,SOTA(State-of-the-art-to-end Control)よりもクロスシーン/プラットフォーム駆動性が向上する。
論文 参考訳(メタデータ) (2020-04-27T06:17:55Z) - PLOP: Probabilistic poLynomial Objects trajectory Planning for
autonomous driving [8.105493956485583]
条件付き模倣学習アルゴリズムを用いて,エゴ車とその周辺地域の軌道を推定する。
私たちのアプローチは計算効率が高く、オンボードセンサーのみに依存します。
公開データセットnuScenesでオフラインで評価する。
論文 参考訳(メタデータ) (2020-03-09T16:55:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。