On Learning Continuous Pairwise Markov Random Fields
- URL: http://arxiv.org/abs/2010.15031v1
- Date: Wed, 28 Oct 2020 15:09:43 GMT
- Title: On Learning Continuous Pairwise Markov Random Fields
- Authors: Abhin Shah, Devavrat Shah, Gregory W. Wornell
- Abstract summary: We consider learning a sparse pairwise Markov Random Field (MRF) with continuous variables from i.i.d samples.
Our approach is applicable to a large class of pairwise MRFs with continuous variables and also has desirable properties, including consistency and normality under mild conditions.
- Score: 33.38669988203501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider learning a sparse pairwise Markov Random Field (MRF) with
continuous-valued variables from i.i.d samples. We adapt the algorithm of
Vuffray et al. (2019) to this setting and provide finite-sample analysis
revealing sample complexity scaling logarithmically with the number of
variables, as in the discrete and Gaussian settings. Our approach is applicable
to a large class of pairwise MRFs with continuous variables and also has
desirable asymptotic properties, including consistency and normality under mild
conditions. Further, we establish that the population version of the
optimization criterion employed in Vuffray et al. (2019) can be interpreted as
local maximum likelihood estimation (MLE). As part of our analysis, we
introduce a robust variation of sparse linear regression a` la Lasso, which may
be of interest in its own right.
Related papers
- Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling [22.256068524699472]
In this work, we propose an Annealed Importance Sampling (AIS) approach to address these issues.
We combine the strengths of Sequential Monte Carlo samplers and VI to explore a wider range of posterior distributions and gradually approach the target distribution.
Experimental results on both toy and image datasets demonstrate that our method outperforms state-of-the-art methods in terms of tighter variational bounds, higher log-likelihoods, and more robust convergence.
arXiv Detail & Related papers (2024-08-13T08:09:05Z) - Robust scalable initialization for Bayesian variational inference with
multi-modal Laplace approximations [0.0]
Variational mixtures with full-covariance structures suffer from a quadratic growth due to variational parameters with the number of parameters.
We propose a method for constructing an initial Gaussian model approximation that can be used to warm-start variational inference.
arXiv Detail & Related papers (2023-07-12T19:30:04Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
We introduce probabilistic unrolling, a method that combines Monte Carlo sampling with iterative linear solvers to circumvent matrix inversions.
Our theoretical analyses reveal that unrolling and backpropagation through the iterations of the solver can accelerate gradient estimation for maximum likelihood estimation.
In experiments on simulated and real data, we demonstrate that probabilistic unrolling learns latent Gaussian models up to an order of magnitude faster than gradient EM, with minimal losses in model performance.
arXiv Detail & Related papers (2023-06-05T21:08:34Z) - Generalised Gaussian Process Latent Variable Models (GPLVM) with
Stochastic Variational Inference [9.468270453795409]
We study the doubly formulation of the BayesianVM model amenable with minibatch training.
We show how this framework is compatible with different latent variable formulations and perform experiments to compare a suite of models.
We demonstrate how we can train in the presence of massively missing data and obtain high-fidelity reconstructions.
arXiv Detail & Related papers (2022-02-25T21:21:51Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Sampling Approximately Low-Rank Ising Models: MCMC meets Variational
Methods [35.24886589614034]
We consider quadratic definite Ising models on the hypercube with a general interaction $J$.
Our general result implies the first time sampling algorithms for low-rank Ising models.
arXiv Detail & Related papers (2022-02-17T21:43:50Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
We study the problem of estimating the fixed point of a contractive operator defined on a separable Banach space.
We establish non-asymptotic bounds for both the operator defect and the estimation error.
arXiv Detail & Related papers (2022-01-21T02:46:57Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
Motivated by the problem of online correlation analysis, we propose the emphStochastic Scaled-Gradient Descent (SSD) algorithm.
We bring these ideas together in an application to online correlation analysis, deriving for the first time an optimal one-time-scale algorithm with an explicit rate of local convergence to normality.
arXiv Detail & Related papers (2021-12-29T18:46:52Z) - On Sparse High-Dimensional Graphical Model Learning For Dependent Time Series [12.94486861344922]
We consider the problem of inferring the conditional independence graph (CIG) of a sparse, high-dimensional stationary time series.
A sparse-group lasso-based frequency-domain formulation of the problem is presented.
We also empirically investigate selection of the tuning parameters based on Bayesian information criterion.
arXiv Detail & Related papers (2021-11-15T16:52:02Z) - Minibatch vs Local SGD with Shuffling: Tight Convergence Bounds and
Beyond [63.59034509960994]
We study shuffling-based variants: minibatch and local Random Reshuffling, which draw gradients without replacement.
For smooth functions satisfying the Polyak-Lojasiewicz condition, we obtain convergence bounds which show that these shuffling-based variants converge faster than their with-replacement counterparts.
We propose an algorithmic modification called synchronized shuffling that leads to convergence rates faster than our lower bounds in near-homogeneous settings.
arXiv Detail & Related papers (2021-10-20T02:25:25Z) - Is Temporal Difference Learning Optimal? An Instance-Dependent Analysis [102.29671176698373]
We address the problem of policy evaluation in discounted decision processes, and provide Markov-dependent guarantees on the $ell_infty$error under a generative model.
We establish both and non-asymptotic versions of local minimax lower bounds for policy evaluation, thereby providing an instance-dependent baseline by which to compare algorithms.
arXiv Detail & Related papers (2020-03-16T17:15:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.