Robust scalable initialization for Bayesian variational inference with
multi-modal Laplace approximations
- URL: http://arxiv.org/abs/2307.06424v1
- Date: Wed, 12 Jul 2023 19:30:04 GMT
- Title: Robust scalable initialization for Bayesian variational inference with
multi-modal Laplace approximations
- Authors: Wyatt Bridgman, Reese Jones, Mohammad Khalil
- Abstract summary: Variational mixtures with full-covariance structures suffer from a quadratic growth due to variational parameters with the number of parameters.
We propose a method for constructing an initial Gaussian model approximation that can be used to warm-start variational inference.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: For predictive modeling relying on Bayesian inversion, fully independent, or
``mean-field'', Gaussian distributions are often used as approximate
probability density functions in variational inference since the number of
variational parameters is twice the number of unknown model parameters. The
resulting diagonal covariance structure coupled with unimodal behavior can be
too restrictive when dealing with highly non-Gaussian behavior, including
multimodality. High-fidelity surrogate posteriors in the form of Gaussian
mixtures can capture any distribution to an arbitrary degree of accuracy while
maintaining some analytical tractability. Variational inference with Gaussian
mixtures with full-covariance structures suffers from a quadratic growth in
variational parameters with the number of model parameters. Coupled with the
existence of multiple local minima due to nonconvex trends in the loss
functions often associated with variational inference, these challenges
motivate the need for robust initialization procedures to improve the
performance and scalability of variational inference with mixture models.
In this work, we propose a method for constructing an initial Gaussian
mixture model approximation that can be used to warm-start the iterative
solvers for variational inference. The procedure begins with an optimization
stage in model parameter space in which local gradient-based optimization,
globalized through multistart, is used to determine a set of local maxima,
which we take to approximate the mixture component centers. Around each mode, a
local Gaussian approximation is constructed via the Laplace method. Finally,
the mixture weights are determined through constrained least squares
regression. Robustness and scalability are demonstrated using synthetic tests.
The methodology is applied to an inversion problem in structural dynamics
involving unknown viscous damping coefficients.
Related papers
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Variational Bayesian surrogate modelling with application to robust design optimisation [0.9626666671366836]
Surrogate models provide a quick-to-evaluate approximation to complex computational models.
We consider Bayesian inference for constructing statistical surrogates with input uncertainties and dimensionality reduction.
We demonstrate intrinsic and robust structural optimisation problems where cost functions depend on a weighted sum of the mean and standard deviation of model outputs.
arXiv Detail & Related papers (2024-04-23T09:22:35Z) - Numerically Stable Sparse Gaussian Processes via Minimum Separation
using Cover Trees [57.67528738886731]
We study the numerical stability of scalable sparse approximations based on inducing points.
For low-dimensional tasks such as geospatial modeling, we propose an automated method for computing inducing points satisfying these conditions.
arXiv Detail & Related papers (2022-10-14T15:20:17Z) - Amortized backward variational inference in nonlinear state-space models [0.0]
We consider the problem of state estimation in general state-space models using variational inference.
We establish for the first time that, under mixing assumptions, the variational approximation of expectations of additive state functionals induces an error which grows at most linearly in the number of observations.
arXiv Detail & Related papers (2022-06-01T08:35:54Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Sampling Approximately Low-Rank Ising Models: MCMC meets Variational
Methods [35.24886589614034]
We consider quadratic definite Ising models on the hypercube with a general interaction $J$.
Our general result implies the first time sampling algorithms for low-rank Ising models.
arXiv Detail & Related papers (2022-02-17T21:43:50Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Bayesian multiscale deep generative model for the solution of
high-dimensional inverse problems [0.0]
A novel multiscale Bayesian inference approach is introduced based on deep probabilistic generative models.
The method allows high-dimensional parameter estimation while exhibiting stability, efficiency and accuracy.
arXiv Detail & Related papers (2021-02-04T11:47:21Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
We show that discretizations yielding consistent estimators have the property of invariance under coarse-graining'
This result explains why combining differencing schemes for derivatives reconstruction and local-in-time inference approaches does not work for time series analysis of second or higher order differential equations.
arXiv Detail & Related papers (2021-01-16T17:11:02Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
We show that common optimization methods lead to poor variational approximations if the problem is moderately large.
Motivated by these findings, we develop a more robust and accurate optimization framework by viewing the underlying algorithm as producing a Markov chain.
arXiv Detail & Related papers (2020-09-01T19:12:11Z) - Mean-Field Approximation to Gaussian-Softmax Integral with Application
to Uncertainty Estimation [23.38076756988258]
We propose a new single-model based approach to quantify uncertainty in deep neural networks.
We use a mean-field approximation formula to compute an analytically intractable integral.
Empirically, the proposed approach performs competitively when compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-06-13T07:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.