SAR-NAS: Skeleton-based Action Recognition via Neural Architecture
Searching
- URL: http://arxiv.org/abs/2010.15336v1
- Date: Thu, 29 Oct 2020 03:24:15 GMT
- Title: SAR-NAS: Skeleton-based Action Recognition via Neural Architecture
Searching
- Authors: Haoyuan Zhang, Yonghong Hou, Pichao Wang, Zihui Guo, Wanqing Li
- Abstract summary: We encode a skeleton-based action instance into a tensor and define a set of operations to build two types of network cells: normal cells and reduction cells.
Experiments on the challenging NTU RGB+D and Kinectics datasets have verified that most of the networks developed to date for skeleton-based action recognition are likely not compact and efficient.
The proposed method provides an approach to search for such a compact network that is able to achieve comparative or even better performance than the state-of-the-art methods.
- Score: 18.860051578038608
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a study of automatic design of neural network
architectures for skeleton-based action recognition. Specifically, we encode a
skeleton-based action instance into a tensor and carefully define a set of
operations to build two types of network cells: normal cells and reduction
cells. The recently developed DARTS (Differentiable Architecture Search) is
adopted to search for an effective network architecture that is built upon the
two types of cells. All operations are 2D based in order to reduce the overall
computation and search space. Experiments on the challenging NTU RGB+D and
Kinectics datasets have verified that most of the networks developed to date
for skeleton-based action recognition are likely not compact and efficient. The
proposed method provides an approach to search for such a compact network that
is able to achieve comparative or even better performance than the
state-of-the-art methods.
Related papers
- EM-DARTS: Hierarchical Differentiable Architecture Search for Eye Movement Recognition [54.99121380536659]
Eye movement biometrics have received increasing attention thanks to its high secure identification.
Deep learning (DL) models have been recently successfully applied for eye movement recognition.
DL architecture still is determined by human prior knowledge.
We propose EM-DARTS, a hierarchical differentiable architecture search algorithm to automatically design the DL architecture for eye movement recognition.
arXiv Detail & Related papers (2024-09-22T13:11:08Z) - DNA Family: Boosting Weight-Sharing NAS with Block-Wise Supervisions [121.05720140641189]
We develop a family of models with the distilling neural architecture (DNA) techniques.
Our proposed DNA models can rate all architecture candidates, as opposed to previous works that can only access a sub- search space using algorithms.
Our models achieve state-of-the-art top-1 accuracy of 78.9% and 83.6% on ImageNet for a mobile convolutional network and a small vision transformer, respectively.
arXiv Detail & Related papers (2024-03-02T22:16:47Z) - NAS-ASDet: An Adaptive Design Method for Surface Defect Detection
Network using Neural Architecture Search [5.640706784987607]
We propose a new method called NAS-ASDet to adaptively design network for surface defect detection.
First, a refined and industry-appropriate search space that can adaptively adjust the feature distribution is designed.
Then, a progressive search strategy with a deep supervision mechanism is used to explore the search space faster and better.
arXiv Detail & Related papers (2023-11-18T03:15:45Z) - TS-ENAS:Two-Stage Evolution for Cell-based Network Architecture Search [3.267963071384687]
We propose a Two-Stage Evolution for cell-based Network Architecture Search (TS-ENAS)
In our algorithm, a new cell-based search space and an effective two-stage encoding method are designed to represent cells and neural network structures.
The experimental results show that TS-ENAS can more effectively find the neural network architecture with comparative performance.
arXiv Detail & Related papers (2023-10-14T08:02:01Z) - DCP-NAS: Discrepant Child-Parent Neural Architecture Search for 1-bit
CNNs [53.82853297675979]
1-bit convolutional neural networks (CNNs) with binary weights and activations show their potential for resource-limited embedded devices.
One natural approach is to use 1-bit CNNs to reduce the computation and memory cost of NAS.
We introduce Discrepant Child-Parent Neural Architecture Search (DCP-NAS) to efficiently search 1-bit CNNs.
arXiv Detail & Related papers (2023-06-27T11:28:29Z) - HASA: Hybrid Architecture Search with Aggregation Strategy for
Echinococcosis Classification and Ovary Segmentation in Ultrasound Images [0.0]
We propose a hybrid NAS framework for ultrasound (US) image classification and segmentation.
Our method can generate more powerful and lightweight models for the above US image classification and segmentation tasks.
arXiv Detail & Related papers (2022-04-14T01:43:00Z) - Differentiable Neural Architecture Search with Morphism-based
Transformable Backbone Architectures [35.652234989200956]
This study aims at making the architecture search process more adaptive for one-shot or online training.
It introduces a growing mechanism for differentiable neural architecture search based on network morphism.
We also implement a recently proposed two-input backbone architecture for recurrent neural networks.
arXiv Detail & Related papers (2021-06-14T07:56:33Z) - Neural Architecture Search of SPD Manifold Networks [79.45110063435617]
We propose a new neural architecture search (NAS) problem of Symmetric Positive Definite (SPD) manifold networks.
We first introduce a geometrically rich and diverse SPD neural architecture search space for an efficient SPD cell design.
We exploit a differentiable NAS algorithm on our relaxed continuous search space for SPD neural architecture search.
arXiv Detail & Related papers (2020-10-27T18:08:57Z) - DC-NAS: Divide-and-Conquer Neural Architecture Search [108.57785531758076]
We present a divide-and-conquer (DC) approach to effectively and efficiently search deep neural architectures.
We achieve a $75.1%$ top-1 accuracy on the ImageNet dataset, which is higher than that of state-of-the-art methods using the same search space.
arXiv Detail & Related papers (2020-05-29T09:02:16Z) - Binarizing MobileNet via Evolution-based Searching [66.94247681870125]
We propose a use of evolutionary search to facilitate the construction and training scheme when binarizing MobileNet.
Inspired by one-shot architecture search frameworks, we manipulate the idea of group convolution to design efficient 1-Bit Convolutional Neural Networks (CNNs)
Our objective is to come up with a tiny yet efficient binary neural architecture by exploring the best candidates of the group convolution.
arXiv Detail & Related papers (2020-05-13T13:25:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.